/* The PyObject_ memory family: high-level object memory interfaces. See pymem.h for the low-level PyMem_ family. */ #ifndef Py_OBJIMPL_H #define Py_OBJIMPL_H #include "pymem.h" #ifdef __cplusplus extern "C" { #endif /* BEWARE: Each interface exports both functions and macros. Extension modules should use the functions, to ensure binary compatibility across Python versions. Because the Python implementation is free to change internal details, and the macros may (or may not) expose details for speed, if you do use the macros you must recompile your extensions with each Python release. Never mix calls to PyObject_ memory functions with calls to the platform malloc/realloc/ calloc/free, or with calls to PyMem_. */ /* Functions and macros for modules that implement new object types. - PyObject_New(type, typeobj) allocates memory for a new object of the given type, and initializes part of it. 'type' must be the C structure type used to represent the object, and 'typeobj' the address of the corresponding type object. Reference count and type pointer are filled in; the rest of the bytes of the object are *undefined*! The resulting expression type is 'type *'. The size of the object is determined by the tp_basicsize field of the type object. - PyObject_NewVar(type, typeobj, n) is similar but allocates a variable-size object with room for n items. In addition to the refcount and type pointer fields, this also fills in the ob_size field. - PyObject_Del(op) releases the memory allocated for an object. It does not run a destructor -- it only frees the memory. PyObject_Free is identical. - PyObject_Init(op, typeobj) and PyObject_InitVar(op, typeobj, n) don't allocate memory. Instead of a 'type' parameter, they take a pointer to a new object (allocated by an arbitrary allocator), and initialize its object header fields. Note that objects created with PyObject_{New, NewVar} are allocated using the specialized Python allocator (implemented in obmalloc.c), if WITH_PYMALLOC is enabled. In addition, a special debugging allocator is used if PYMALLOC_DEBUG is also #defined. In case a specific form of memory management is needed (for example, if you must use the platform malloc heap(s), or shared memory, or C++ local storage or operator new), you must first allocate the object with your custom allocator, then pass its pointer to PyObject_{Init, InitVar} for filling in its Python- specific fields: reference count, type pointer, possibly others. You should be aware that Python has no control over these objects because they don't cooperate with the Python memory manager. Such objects may not be eligible for automatic garbage collection and you have to make sure that they are released accordingly whenever their destructor gets called (cf. the specific form of memory management you're using). Unless you have specific memory management requirements, use PyObject_{New, NewVar, Del}. */ /* * Raw object memory interface * =========================== */ /* Functions to call the same malloc/realloc/free as used by Python's object allocator. If WITH_PYMALLOC is enabled, these may differ from the platform malloc/realloc/free. The Python object allocator is designed for fast, cache-conscious allocation of many "small" objects, and with low hidden memory overhead. PyObject_Malloc(0) returns a unique non-NULL pointer if possible. PyObject_Realloc(NULL, n) acts like PyObject_Malloc(n). PyObject_Realloc(p != NULL, 0) does not return NULL, or free the memory at p. Returned pointers must be checked for NULL explicitly; no action is performed on failure other than to return NULL (no warning it printed, no exception is set, etc). For allocating objects, use PyObject_{New, NewVar} instead whenever possible. The PyObject_{Malloc, Realloc, Free} family is exposed so that you can exploit Python's small-block allocator for non-object uses. If you must use these routines to allocate object memory, make sure the object gets initialized via PyObject_{Init, InitVar} after obtaining the raw memory. */ PyAPI_FUNC(void *) PyObject_Malloc(size_t size); #if !defined(Py_LIMITED_API) || Py_LIMITED_API+0 >= 0x03050000 PyAPI_FUNC(void *) PyObject_Calloc(size_t nelem, size_t elsize); #endif PyAPI_FUNC(void *) PyObject_Realloc(void *ptr, size_t new_size); PyAPI_FUNC(void) PyObject_Free(void *ptr); #ifndef Py_LIMITED_API /* This function returns the number of allocated memory blocks, regardless of size */ PyAPI_FUNC(Py_ssize_t) _Py_GetAllocatedBlocks(void); #endif /* !Py_LIMITED_API */ /* Macros */ #ifdef WITH_PYMALLOC #ifndef Py_LIMITED_API PyAPI_FUNC(int) _PyObject_DebugMallocStats(FILE *out); #endif /* #ifndef Py_LIMITED_API */ #endif /* Macros */ #define PyObject_MALLOC PyObject_Malloc #define PyObject_REALLOC PyObject_Realloc #define PyObject_FREE PyObject_Free #define PyObject_Del PyObject_Free #define PyObject_DEL PyObject_Free /* * Generic object allocator interface * ================================== */ /* Functions */ PyAPI_FUNC(PyObject *) PyObject_Init(PyObject *, PyTypeObject *); PyAPI_FUNC(PyVarObject *) PyObject_InitVar(PyVarObject *, PyTypeObject *, Py_ssize_t); PyAPI_FUNC(PyObject *) _PyObject_New(PyTypeObject *); PyAPI_FUNC(PyVarObject *) _PyObject_NewVar(PyTypeObject *, Py_ssize_t); #define PyObject_New(type, typeobj) \ ( (type *) _PyObject_New(typeobj) ) #define PyObject_NewVar(type, typeobj, n) \ ( (type *) _PyObject_NewVar((typeobj), (n)) ) /* Inline functions trading binary compatibility for speed: PyObject_INIT() is the fast version of PyObject_Init(), and PyObject_INIT_VAR() is the fast version of PyObject_InitVar. See also pymem.h. These inline functions expect non-NULL object pointers. */ static inline PyObject* PyObject_INIT(PyObject *op, PyTypeObject *typeobj) { assert(op != NULL); Py_TYPE(op) = typeobj; _Py_NewReference(op); return op; } static inline PyVarObject* PyObject_INIT_VAR(PyVarObject *op, PyTypeObject *typeobj, Py_ssize_t size) { assert(op != NULL); Py_SIZE(op) = size; PyObject_INIT((PyObject *)op, typeobj); return op; } #define _PyObject_SIZE(typeobj) ( (typeobj)->tp_basicsize ) /* _PyObject_VAR_SIZE returns the number of bytes (as size_t) allocated for a vrbl-size object with nitems items, exclusive of gc overhead (if any). The value is rounded up to the closest multiple of sizeof(void *), in order to ensure that pointer fields at the end of the object are correctly aligned for the platform (this is of special importance for subclasses of, e.g., str or int, so that pointers can be stored after the embedded data). Note that there's no memory wastage in doing this, as malloc has to return (at worst) pointer-aligned memory anyway. */ #if ((SIZEOF_VOID_P - 1) & SIZEOF_VOID_P) != 0 # error "_PyObject_VAR_SIZE requires SIZEOF_VOID_P be a power of 2" #endif #define _PyObject_VAR_SIZE(typeobj, nitems) \ _Py_SIZE_ROUND_UP((typeobj)->tp_basicsize + \ (nitems)*(typeobj)->tp_itemsize, \ SIZEOF_VOID_P) #define PyObject_NEW(type, typeobj) \ ( (type *) PyObject_Init( \ (PyObject *) PyObject_MALLOC( _PyObject_SIZE(typeobj) ), (typeobj)) ) #define PyObject_NEW_VAR(type, typeobj, n) \ ( (type *) PyObject_InitVar( \ (PyVarObject *) PyObject_MALLOC(_PyObject_VAR_SIZE((typeobj),(n)) ),\ (typeobj), (n)) ) /* This example code implements an object constructor with a custom allocator, where PyObject_New is inlined, and shows the important distinction between two steps (at least): 1) the actual allocation of the object storage; 2) the initialization of the Python specific fields in this storage with PyObject_{Init, InitVar}. PyObject * YourObject_New(...) { PyObject *op; op = (PyObject *) Your_Allocator(_PyObject_SIZE(YourTypeStruct)); if (op == NULL) return PyErr_NoMemory(); PyObject_Init(op, &YourTypeStruct); op->ob_field = value; ... return op; } Note that in C++, the use of the new operator usually implies that the 1st step is performed automatically for you, so in a C++ class constructor you would start directly with PyObject_Init/InitVar */ #ifndef Py_LIMITED_API typedef struct { /* user context passed as the first argument to the 2 functions */ void *ctx; /* allocate an arena of size bytes */ void* (*alloc) (void *ctx, size_t size); /* free an arena */ void (*free) (void *ctx, void *ptr, size_t size); } PyObjectArenaAllocator; /* Get the arena allocator. */ PyAPI_FUNC(void) PyObject_GetArenaAllocator(PyObjectArenaAllocator *allocator); /* Set the arena allocator. */ PyAPI_FUNC(void) PyObject_SetArenaAllocator(PyObjectArenaAllocator *allocator); #endif /* * Garbage Collection Support * ========================== */ /* C equivalent of gc.collect() which ignores the state of gc.enabled. */ PyAPI_FUNC(Py_ssize_t) PyGC_Collect(void); #ifndef Py_LIMITED_API PyAPI_FUNC(Py_ssize_t) _PyGC_CollectNoFail(void); PyAPI_FUNC(Py_ssize_t) _PyGC_CollectIfEnabled(void); #endif /* Test if a type has a GC head */ #define PyType_IS_GC(t) PyType_HasFeature((t), Py_TPFLAGS_HAVE_GC) /* Test if an object has a GC head */ #ifndef Py_LIMITED_API #define PyObject_IS_GC(o) (PyType_IS_GC(Py_TYPE(o)) && \ (Py_TYPE(o)->tp_is_gc == NULL || Py_TYPE(o)->tp_is_gc(o))) #endif PyAPI_FUNC(PyVarObject *) _PyObject_GC_Resize(PyVarObject *, Py_ssize_t); #define PyObject_GC_Resize(type, op, n) \ ( (type *) _PyObject_GC_Resize((PyVarObject *)(op), (n)) ) /* GC information is stored BEFORE the object structure. */ #ifndef Py_LIMITED_API typedef struct { // Pointer to next object in the list. // 0 means the object is not tracked uintptr_t _gc_next; // Pointer to previous object in the list. // Lowest two bits are used for flags documented later. uintptr_t _gc_prev; } PyGC_Head; extern PyGC_Head *_PyGC_generation0; #define _Py_AS_GC(o) ((PyGC_Head *)(o)-1) /* Bit flags for _gc_prev */ /* Bit 0 is set when tp_finalize is called */ #define _PyGC_PREV_MASK_FINALIZED (1) /* Bit 1 is set when the object is in generation which is GCed currently. */ #define _PyGC_PREV_MASK_COLLECTING (2) /* The (N-2) most significant bits contain the real address. */ #define _PyGC_PREV_SHIFT (2) #define _PyGC_PREV_MASK (((uintptr_t) -1) << _PyGC_PREV_SHIFT) // Lowest bit of _gc_next is used for flags only in GC. // But it is always 0 for normal code. #define _PyGCHead_NEXT(g) ((PyGC_Head*)(g)->_gc_next) #define _PyGCHead_SET_NEXT(g, p) ((g)->_gc_next = (uintptr_t)(p)) // Lowest two bits of _gc_prev is used for _PyGC_PREV_MASK_* flags. #define _PyGCHead_PREV(g) ((PyGC_Head*)((g)->_gc_prev & _PyGC_PREV_MASK)) #define _PyGCHead_SET_PREV(g, p) do { \ assert(((uintptr_t)p & ~_PyGC_PREV_MASK) == 0); \ (g)->_gc_prev = ((g)->_gc_prev & ~_PyGC_PREV_MASK) \ | ((uintptr_t)(p)); \ } while (0) #define _PyGCHead_FINALIZED(g) (((g)->_gc_prev & _PyGC_PREV_MASK_FINALIZED) != 0) #define _PyGCHead_SET_FINALIZED(g) ((g)->_gc_prev |= _PyGC_PREV_MASK_FINALIZED) #define _PyGC_FINALIZED(o) _PyGCHead_FINALIZED(_Py_AS_GC(o)) #define _PyGC_SET_FINALIZED(o) _PyGCHead_SET_FINALIZED(_Py_AS_GC(o)) /* Tell the GC to track this object. * * NB: While the object is tracked by the collector, it must be safe to call the * ob_traverse method. * * Internal note: _PyGC_generation0->_gc_prev doesn't have any bit flags * because it's not object header. So we don't use _PyGCHead_PREV() and * _PyGCHead_SET_PREV() for it to avoid unnecessary bitwise operations. */ #define _PyObject_GC_TRACK(o) do { \ PyGC_Head *g = _Py_AS_GC(o); \ if (g->_gc_next != 0) { \ Py_FatalError("GC object already tracked"); \ } \ assert((g->_gc_prev & _PyGC_PREV_MASK_COLLECTING) == 0); \ PyGC_Head *last = (PyGC_Head*)(_PyGC_generation0->_gc_prev); \ _PyGCHead_SET_NEXT(last, g); \ _PyGCHead_SET_PREV(g, last); \ _PyGCHead_SET_NEXT(g, _PyGC_generation0); \ _PyGC_generation0->_gc_prev = (uintptr_t)g; \ } while (0); /* Tell the GC to stop tracking this object. * * Internal note: This may be called while GC. So _PyGC_PREV_MASK_COLLECTING must * be cleared. But _PyGC_PREV_MASK_FINALIZED bit is kept. */ #define _PyObject_GC_UNTRACK(o) do { \ PyGC_Head *g = _Py_AS_GC(o); \ PyGC_Head *prev = _PyGCHead_PREV(g); \ PyGC_Head *next = _PyGCHead_NEXT(g); \ assert(next != NULL); \ _PyGCHead_SET_NEXT(prev, next); \ _PyGCHead_SET_PREV(next, prev); \ g->_gc_next = 0; \ g->_gc_prev &= _PyGC_PREV_MASK_FINALIZED; \ } while (0); /* True if the object is currently tracked by the GC. */ #define _PyObject_GC_IS_TRACKED(o) (_Py_AS_GC(o)->_gc_next != 0) /* True if the object may be tracked by the GC in the future, or already is. This can be useful to implement some optimizations. */ #define _PyObject_GC_MAY_BE_TRACKED(obj) \ (PyObject_IS_GC(obj) && \ (!PyTuple_CheckExact(obj) || _PyObject_GC_IS_TRACKED(obj))) #endif /* Py_LIMITED_API */ #ifndef Py_LIMITED_API PyAPI_FUNC(PyObject *) _PyObject_GC_Malloc(size_t size); PyAPI_FUNC(PyObject *) _PyObject_GC_Calloc(size_t size); #endif /* !Py_LIMITED_API */ PyAPI_FUNC(PyObject *) _PyObject_GC_New(PyTypeObject *); PyAPI_FUNC(PyVarObject *) _PyObject_GC_NewVar(PyTypeObject *, Py_ssize_t); PyAPI_FUNC(void) PyObject_GC_Track(void *); PyAPI_FUNC(void) PyObject_GC_UnTrack(void *); PyAPI_FUNC(void) PyObject_GC_Del(void *); #define PyObject_GC_New(type, typeobj) \ ( (type *) _PyObject_GC_New(typeobj) ) #define PyObject_GC_NewVar(type, typeobj, n) \ ( (type *) _PyObject_GC_NewVar((typeobj), (n)) ) /* Utility macro to help write tp_traverse functions. * To use this macro, the tp_traverse function must name its arguments * "visit" and "arg". This is intended to keep tp_traverse functions * looking as much alike as possible. */ #define Py_VISIT(op) \ do { \ if (op) { \ int vret = visit((PyObject *)(op), arg); \ if (vret) \ return vret; \ } \ } while (0) /* Test if a type supports weak references */ #ifndef Py_LIMITED_API #define PyType_SUPPORTS_WEAKREFS(t) ((t)->tp_weaklistoffset > 0) #define PyObject_GET_WEAKREFS_LISTPTR(o) \ ((PyObject **) (((char *) (o)) + Py_TYPE(o)->tp_weaklistoffset)) #endif #ifdef __cplusplus } #endif #endif /* !Py_OBJIMPL_H */