summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'leptonica/src/pixconv.c')
-rw-r--r--leptonica/src/pixconv.c4297
1 files changed, 4297 insertions, 0 deletions
diff --git a/leptonica/src/pixconv.c b/leptonica/src/pixconv.c
new file mode 100644
index 00000000..2776d6cb
--- /dev/null
+++ b/leptonica/src/pixconv.c
@@ -0,0 +1,4297 @@
+/*====================================================================*
+ - Copyright (C) 2001 Leptonica. All rights reserved.
+ -
+ - Redistribution and use in source and binary forms, with or without
+ - modification, are permitted provided that the following conditions
+ - are met:
+ - 1. Redistributions of source code must retain the above copyright
+ - notice, this list of conditions and the following disclaimer.
+ - 2. Redistributions in binary form must reproduce the above
+ - copyright notice, this list of conditions and the following
+ - disclaimer in the documentation and/or other materials
+ - provided with the distribution.
+ -
+ - THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ - ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ - LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ - A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL ANY
+ - CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+ - EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+ - PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+ - PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
+ - OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
+ - NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+ - SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *====================================================================*/
+
+/*!
+ * \file pixconv.c
+ * <pre>
+ *
+ * These functions convert between images of different types
+ * without scaling.
+ *
+ * Conversion from 8 bpp grayscale to 1, 2, 4 and 8 bpp
+ * PIX *pixThreshold8()
+ *
+ * Conversion from colormap to full color or grayscale
+ * PIX *pixRemoveColormapGeneral()
+ * PIX *pixRemoveColormap()
+ *
+ * Add colormap losslessly (8 to 8)
+ * l_int32 pixAddGrayColormap8()
+ * PIX *pixAddMinimalGrayColormap8()
+ *
+ * Conversion from RGB color to 8 bit gray
+ * PIX *pixConvertRGBToLuminance()
+ * PIX *pixConvertRGBToGrayGeneral()
+ * PIX *pixConvertRGBToGray()
+ * PIX *pixConvertRGBToGrayFast()
+ * PIX *pixConvertRGBToGrayMinMax()
+ * PIX *pixConvertRGBToGraySatBoost()
+ * PIX *pixConvertRGBToGrayArb()
+ * PIX *pixConvertRGBToBinaryArb()
+ *
+ * Conversion from grayscale to colormap
+ * PIX *pixConvertGrayToColormap() -- 2, 4, 8 bpp
+ * PIX *pixConvertGrayToColormap8() -- 8 bpp only
+ *
+ * Colorizing conversion from grayscale to color
+ * PIX *pixColorizeGray() -- 8 bpp or cmapped
+ *
+ * Conversion from RGB color to colormap
+ * PIX *pixConvertRGBToColormap()
+ *
+ * Conversion from colormap to 1 bpp
+ * PIX *pixConvertCmapTo1()
+ *
+ * Quantization for relatively small number of colors in source
+ * l_int32 pixQuantizeIfFewColors()
+ *
+ * Conversion from 16 bpp to 8 bpp
+ * PIX *pixConvert16To8()
+ *
+ * Conversion from grayscale to false color
+ * PIX *pixConvertGrayToFalseColor()
+ *
+ * Unpacking conversion from 1 bpp to 2, 4, 8, 16 and 32 bpp
+ * PIX *pixUnpackBinary()
+ * PIX *pixConvert1To16()
+ * PIX *pixConvert1To32()
+ *
+ * Unpacking conversion from 1 bpp to 2 bpp
+ * PIX *pixConvert1To2Cmap()
+ * PIX *pixConvert1To2()
+ *
+ * Unpacking conversion from 1 bpp to 4 bpp
+ * PIX *pixConvert1To4Cmap()
+ * PIX *pixConvert1To4()
+ *
+ * Unpacking conversion from 1, 2 and 4 bpp to 8 bpp
+ * PIX *pixConvert1To8()
+ * PIX *pixConvert2To8()
+ * PIX *pixConvert4To8()
+ *
+ * Unpacking conversion from 8 bpp to 16 bpp
+ * PIX *pixConvert8To16()
+ *
+ * Top-level conversion to 1 bpp
+ * PIX *pixConvertTo1Adaptive()
+ * PIX *pixConvertTo1()
+ * PIX *pixConvertTo1BySampling()
+ *
+ * Top-level conversion to 2 bpp
+ * PIX *pixConvertTo2()
+ * PIX *pixConvert8To2()
+ *
+ * Top-level conversion to 4 bpp
+ * PIX *pixConvertTo4()
+ * PIX *pixConvert8To4()
+ *
+ * Top-level conversion to 8 bpp
+ * PIX *pixConvertTo8()
+ * PIX *pixConvertTo8BySampling()
+ * PIX *pixConvertTo8Colormap()
+ *
+ * Top-level conversion to 16 bpp
+ * PIX *pixConvertTo16()
+ *
+ * Top-level conversion to 32 bpp (RGB)
+ * PIX *pixConvertTo32() ***
+ * PIX *pixConvertTo32BySampling() ***
+ * PIX *pixConvert8To32() ***
+ *
+ * Top-level conversion to 8 or 32 bpp, without colormap
+ * PIX *pixConvertTo8Or32
+ *
+ * Conversion between 24 bpp and 32 bpp rgb
+ * PIX *pixConvert24To32()
+ * PIX *pixConvert32To24()
+ *
+ * Conversion between 32 bpp (1 spp) and 16 or 8 bpp
+ * PIX *pixConvert32To16()
+ * PIX *pixConvert32To8()
+ *
+ * Removal of alpha component by blending with white background
+ * PIX *pixRemoveAlpha()
+ *
+ * Addition of alpha component to 1 bpp
+ * PIX *pixAddAlphaTo1bpp()
+ *
+ * Lossless depth conversion (unpacking)
+ * PIX *pixConvertLossless()
+ *
+ * Conversion for printing in PostScript
+ * PIX *pixConvertForPSWrap()
+ *
+ * Scaling conversion to subpixel RGB
+ * PIX *pixConvertToSubpixelRGB()
+ * PIX *pixConvertGrayToSubpixelRGB()
+ * PIX *pixConvertColorToSubpixelRGB()
+ *
+ * Setting neutral point for min/max boost conversion to gray
+ * void l_setNeutralBoostVal()
+ * </pre>
+ */
+
+#ifdef HAVE_CONFIG_H
+#include <config_auto.h>
+#endif /* HAVE_CONFIG_H */
+
+#include <string.h>
+#include <math.h>
+#include "allheaders.h"
+
+/* ------- Set neutral point for min/max boost conversion to gray ------ */
+ /* Call l_setNeutralBoostVal() to change this */
+static l_int32 var_NEUTRAL_BOOST_VAL = 180;
+
+
+#ifndef NO_CONSOLE_IO
+#define DEBUG_CONVERT_TO_COLORMAP 0
+#define DEBUG_UNROLLING 0
+#endif /* ~NO_CONSOLE_IO */
+
+
+/*-------------------------------------------------------------*
+ * Conversion from 8 bpp grayscale to 1, 2 4 and 8 bpp *
+ *-------------------------------------------------------------*/
+/*!
+ * \brief pixThreshold8()
+ *
+ * \param[in] pixs 8 bpp grayscale
+ * \param[in] d destination depth: 1, 2, 4 or 8
+ * \param[in] nlevels number of levels to be used for colormap
+ * \param[in] cmapflag 1 if makes colormap; 0 otherwise
+ * \return pixd thresholded with standard dest thresholds,
+ * or NULL on error
+ *
+ * <pre>
+ * Notes:
+ * (1) This uses, by default, equally spaced "target" values
+ * that depend on the number of levels, with thresholds
+ * halfway between. For N levels, with separation (N-1)/255,
+ * there are N-1 fixed thresholds.
+ * (2) For 1 bpp destination, the number of levels can only be 2
+ * and if a cmap is made, black is (0,0,0) and white
+ * is (255,255,255), which is opposite to the convention
+ * without a colormap.
+ * (3) For 1, 2 and 4 bpp, the nlevels arg is used if a colormap
+ * is made; otherwise, we take the most significant bits
+ * from the src that will fit in the dest.
+ * (4) For 8 bpp, the input pixs is quantized to nlevels. The
+ * dest quantized with that mapping, either through a colormap
+ * table or directly with 8 bit values.
+ * (5) Typically you should not use make a colormap for 1 bpp dest.
+ * (6) This is not dithering. Each pixel is treated independently.
+ * </pre>
+ */
+PIX *
+pixThreshold8(PIX *pixs,
+ l_int32 d,
+ l_int32 nlevels,
+ l_int32 cmapflag)
+{
+PIX *pixd;
+PIXCMAP *cmap;
+
+ PROCNAME("pixThreshold8");
+
+ if (!pixs)
+ return (PIX *)ERROR_PTR("pixs not defined", procName, NULL);
+ if (pixGetDepth(pixs) != 8)
+ return (PIX *)ERROR_PTR("pixs not 8 bpp", procName, NULL);
+ if (cmapflag && nlevels < 2)
+ return (PIX *)ERROR_PTR("nlevels must be at least 2", procName, NULL);
+
+ switch (d) {
+ case 1:
+ pixd = pixThresholdToBinary(pixs, 128);
+ if (cmapflag) {
+ cmap = pixcmapCreateLinear(1, 2);
+ pixSetColormap(pixd, cmap);
+ }
+ break;
+ case 2:
+ pixd = pixThresholdTo2bpp(pixs, nlevels, cmapflag);
+ break;
+ case 4:
+ pixd = pixThresholdTo4bpp(pixs, nlevels, cmapflag);
+ break;
+ case 8:
+ pixd = pixThresholdOn8bpp(pixs, nlevels, cmapflag);
+ break;
+ default:
+ return (PIX *)ERROR_PTR("d must be in {1,2,4,8}", procName, NULL);
+ }
+
+ if (!pixd)
+ return (PIX *)ERROR_PTR("pixd not made", procName, NULL);
+ pixCopyInputFormat(pixd, pixs);
+ return pixd;
+}
+
+
+/*-------------------------------------------------------------*
+ * Conversion from colormapped pix *
+ *-------------------------------------------------------------*/
+/*!
+ * \brief pixRemoveColormapGeneral()
+ *
+ * \param[in] pixs any depth, with or without colormap
+ * \param[in] type REMOVE_CMAP_TO_BINARY,
+ * REMOVE_CMAP_TO_GRAYSCALE,
+ * REMOVE_CMAP_TO_FULL_COLOR,
+ * REMOVE_CMAP_WITH_ALPHA,
+ * REMOVE_CMAP_BASED_ON_SRC
+ * \param[in] ifnocmap L_CLONE, L_COPY
+ * \return pixd always a new pix; without colormap, or NULL on error
+ *
+ * <pre>
+ * Notes:
+ * (1) Convenience function that allows choice between returning
+ * a clone or a copy if pixs does not have a colormap.
+ * (2) See pixRemoveColormap().
+ * </pre>
+ */
+PIX *
+pixRemoveColormapGeneral(PIX *pixs,
+ l_int32 type,
+ l_int32 ifnocmap)
+{
+ PROCNAME("pixRemoveColormapGeneral");
+
+ if (!pixs)
+ return (PIX *)ERROR_PTR("pixs not defined", procName, NULL);
+ if (ifnocmap != L_CLONE && ifnocmap != L_COPY)
+ return (PIX *)ERROR_PTR("invalid value for ifnocmap", procName, NULL);
+
+ if (pixGetColormap(pixs))
+ return pixRemoveColormap(pixs, type);
+
+ if (ifnocmap == L_CLONE)
+ return pixClone(pixs);
+ else
+ return pixCopy(NULL, pixs);
+}
+
+
+/*!
+ * \brief pixRemoveColormap()
+ *
+ * \param[in] pixs see restrictions below
+ * \param[in] type REMOVE_CMAP_TO_BINARY,
+ * REMOVE_CMAP_TO_GRAYSCALE,
+ * REMOVE_CMAP_TO_FULL_COLOR,
+ * REMOVE_CMAP_WITH_ALPHA,
+ * REMOVE_CMAP_BASED_ON_SRC
+ * \return pixd without colormap, or NULL on error
+ *
+ * <pre>
+ * Notes:
+ * (1) If pixs does not have a colormap, a clone is returned.
+ * (2) Otherwise, the input pixs is restricted to 1, 2, 4 or 8 bpp.
+ * (3) Use REMOVE_CMAP_TO_BINARY only on 1 bpp pix.
+ * (4) For grayscale conversion from RGB, use a weighted average
+ * of RGB values, and always return an 8 bpp pix, regardless
+ * of whether the input pixs depth is 2, 4 or 8 bpp.
+ * (5) REMOVE_CMAP_TO_FULL_COLOR ignores the alpha component and
+ * returns a 32 bpp pix with spp == 3 and the alpha bytes are 0.
+ * (6) For REMOVE_CMAP_BASED_ON_SRC, if there is no color, this
+ * returns either a 1 bpp or 8 bpp grayscale pix.
+ * If there is color, this returns a 32 bpp pix, with either:
+ * * 3 spp, if the alpha values are all 255 (opaque), or
+ * * 4 spp (preserving the alpha), if any alpha values are not 255.
+ * </pre>
+ */
+PIX *
+pixRemoveColormap(PIX *pixs,
+ l_int32 type)
+{
+l_int32 sval, rval, gval, bval, val0, val1;
+l_int32 i, j, k, w, h, d, wpls, wpld, ncolors, nalloc, count;
+l_int32 opaque, colorfound, blackwhite;
+l_int32 *rmap, *gmap, *bmap, *amap;
+l_uint32 *datas, *lines, *datad, *lined, *lut, *graymap;
+l_uint32 sword, dword;
+PIXCMAP *cmap;
+PIX *pixd;
+
+ PROCNAME("pixRemoveColormap");
+
+ if (!pixs)
+ return (PIX *)ERROR_PTR("pixs not defined", procName, NULL);
+ if ((cmap = pixGetColormap(pixs)) == NULL)
+ return pixClone(pixs);
+ if (type != REMOVE_CMAP_TO_BINARY &&
+ type != REMOVE_CMAP_TO_GRAYSCALE &&
+ type != REMOVE_CMAP_TO_FULL_COLOR &&
+ type != REMOVE_CMAP_WITH_ALPHA &&
+ type != REMOVE_CMAP_BASED_ON_SRC) {
+ L_WARNING("Invalid type; converting based on src\n", procName);
+ type = REMOVE_CMAP_BASED_ON_SRC;
+ }
+ pixGetDimensions(pixs, &w, &h, &d);
+ if (d != 1 && d != 2 && d != 4 && d != 8)
+ return (PIX *)ERROR_PTR("pixs must be {1,2,4,8} bpp", procName, NULL);
+
+ ncolors = pixcmapGetCount(cmap);
+ nalloc = 1 << d; /* allocate for max size in case of pixel corruption */
+ if (ncolors > nalloc)
+ return (PIX *)ERROR_PTR("too many colors for pixel depth",
+ procName, NULL);
+
+ if (pixcmapToArrays(cmap, &rmap, &gmap, &bmap, &amap))
+ return (PIX *)ERROR_PTR("colormap arrays not made", procName, NULL);
+
+ if (d != 1 && type == REMOVE_CMAP_TO_BINARY) {
+ L_WARNING("not 1 bpp; can't remove cmap to binary\n", procName);
+ type = REMOVE_CMAP_BASED_ON_SRC;
+ }
+
+ /* Select output type depending on colormap content */
+ if (type == REMOVE_CMAP_BASED_ON_SRC) {
+ pixcmapIsOpaque(cmap, &opaque);
+ pixcmapHasColor(cmap, &colorfound);
+ pixcmapIsBlackAndWhite(cmap, &blackwhite);
+ if (!opaque) { /* save the alpha */
+ type = REMOVE_CMAP_WITH_ALPHA;
+ } else if (colorfound) {
+ type = REMOVE_CMAP_TO_FULL_COLOR;
+ } else { /* opaque and no color */
+ if (d == 1 && blackwhite) /* can binarize without loss */
+ type = REMOVE_CMAP_TO_BINARY;
+ else
+ type = REMOVE_CMAP_TO_GRAYSCALE;
+ }
+ }
+
+ datas = pixGetData(pixs);
+ wpls = pixGetWpl(pixs);
+ if (type == REMOVE_CMAP_TO_BINARY) {
+ if ((pixd = pixCopy(NULL, pixs)) == NULL) {
+ L_ERROR("pixd not made\n", procName);
+ goto cleanup_arrays;
+ }
+ pixcmapGetColor(cmap, 0, &rval, &gval, &bval);
+ val0 = rval + gval + bval;
+ pixcmapGetColor(cmap, 1, &rval, &gval, &bval);
+ val1 = rval + gval + bval;
+ if (val0 < val1) /* photometrically inverted from standard */
+ pixInvert(pixd, pixd);
+ pixDestroyColormap(pixd);
+ } else if (type == REMOVE_CMAP_TO_GRAYSCALE) {
+ if ((pixd = pixCreate(w, h, 8)) == NULL) {
+ L_ERROR("pixd not made\n", procName);
+ goto cleanup_arrays;
+ }
+ pixCopyResolution(pixd, pixs);
+ pixCopyInputFormat(pixd, pixs);
+ datad = pixGetData(pixd);
+ wpld = pixGetWpl(pixd);
+ graymap = (l_uint32 *)LEPT_CALLOC(nalloc, sizeof(l_uint32));
+ for (i = 0; i < ncolors; i++) {
+ graymap[i] = (l_uint32)(L_RED_WEIGHT * rmap[i] +
+ L_GREEN_WEIGHT * gmap[i] +
+ L_BLUE_WEIGHT * bmap[i] + 0.5);
+ }
+ for (i = 0; i < h; i++) {
+ lines = datas + i * wpls;
+ lined = datad + i * wpld;
+ switch (d) /* depth test above; no default permitted */
+ {
+ case 8:
+ /* Unrolled 4x */
+ for (j = 0, count = 0; j + 3 < w; j += 4, count++) {
+ sword = lines[count];
+ dword = (graymap[(sword >> 24) & 0xff] << 24) |
+ (graymap[(sword >> 16) & 0xff] << 16) |
+ (graymap[(sword >> 8) & 0xff] << 8) |
+ graymap[sword & 0xff];
+ lined[count] = dword;
+ }
+ /* Cleanup partial word */
+ for (; j < w; j++) {
+ sval = GET_DATA_BYTE(lines, j);
+ gval = graymap[sval];
+ SET_DATA_BYTE(lined, j, gval);
+ }
+#if DEBUG_UNROLLING
+#define CHECK_VALUE(a, b, c) if (GET_DATA_BYTE(a, b) != c) { \
+ lept_stderr("Error: mismatch at %d, %d vs %d\n", \
+ j, GET_DATA_BYTE(a, b), c); }
+ for (j = 0; j < w; j++) {
+ sval = GET_DATA_BYTE(lines, j);
+ gval = graymap[sval];
+ CHECK_VALUE(lined, j, gval);
+ }
+#endif
+ break;
+ case 4:
+ /* Unrolled 8x */
+ for (j = 0, count = 0; j + 7 < w; j += 8, count++) {
+ sword = lines[count];
+ dword = (graymap[(sword >> 28) & 0xf] << 24) |
+ (graymap[(sword >> 24) & 0xf] << 16) |
+ (graymap[(sword >> 20) & 0xf] << 8) |
+ graymap[(sword >> 16) & 0xf];
+ lined[2 * count] = dword;
+ dword = (graymap[(sword >> 12) & 0xf] << 24) |
+ (graymap[(sword >> 8) & 0xf] << 16) |
+ (graymap[(sword >> 4) & 0xf] << 8) |
+ graymap[sword & 0xf];
+ lined[2 * count + 1] = dword;
+ }
+ /* Cleanup partial word */
+ for (; j < w; j++) {
+ sval = GET_DATA_QBIT(lines, j);
+ gval = graymap[sval];
+ SET_DATA_BYTE(lined, j, gval);
+ }
+#if DEBUG_UNROLLING
+ for (j = 0; j < w; j++) {
+ sval = GET_DATA_QBIT(lines, j);
+ gval = graymap[sval];
+ CHECK_VALUE(lined, j, gval);
+ }
+#endif
+ break;
+ case 2:
+ /* Unrolled 16x */
+ for (j = 0, count = 0; j + 15 < w; j += 16, count++) {
+ sword = lines[count];
+ dword = (graymap[(sword >> 30) & 0x3] << 24) |
+ (graymap[(sword >> 28) & 0x3] << 16) |
+ (graymap[(sword >> 26) & 0x3] << 8) |
+ graymap[(sword >> 24) & 0x3];
+ lined[4 * count] = dword;
+ dword = (graymap[(sword >> 22) & 0x3] << 24) |
+ (graymap[(sword >> 20) & 0x3] << 16) |
+ (graymap[(sword >> 18) & 0x3] << 8) |
+ graymap[(sword >> 16) & 0x3];
+ lined[4 * count + 1] = dword;
+ dword = (graymap[(sword >> 14) & 0x3] << 24) |
+ (graymap[(sword >> 12) & 0x3] << 16) |
+ (graymap[(sword >> 10) & 0x3] << 8) |
+ graymap[(sword >> 8) & 0x3];
+ lined[4 * count + 2] = dword;
+ dword = (graymap[(sword >> 6) & 0x3] << 24) |
+ (graymap[(sword >> 4) & 0x3] << 16) |
+ (graymap[(sword >> 2) & 0x3] << 8) |
+ graymap[sword & 0x3];
+ lined[4 * count + 3] = dword;
+ }
+ /* Cleanup partial word */
+ for (; j < w; j++) {
+ sval = GET_DATA_DIBIT(lines, j);
+ gval = graymap[sval];
+ SET_DATA_BYTE(lined, j, gval);
+ }
+#if DEBUG_UNROLLING
+ for (j = 0; j < w; j++) {
+ sval = GET_DATA_DIBIT(lines, j);
+ gval = graymap[sval];
+ CHECK_VALUE(lined, j, gval);
+ }
+#endif
+ break;
+ case 1:
+ /* Unrolled 8x */
+ for (j = 0, count = 0; j + 31 < w; j += 32, count++) {
+ sword = lines[count];
+ for (k = 0; k < 4; k++) {
+ /* The top byte is always the relevant one */
+ dword = (graymap[(sword >> 31) & 0x1] << 24) |
+ (graymap[(sword >> 30) & 0x1] << 16) |
+ (graymap[(sword >> 29) & 0x1] << 8) |
+ graymap[(sword >> 28) & 0x1];
+ lined[8 * count + 2 * k] = dword;
+ dword = (graymap[(sword >> 27) & 0x1] << 24) |
+ (graymap[(sword >> 26) & 0x1] << 16) |
+ (graymap[(sword >> 25) & 0x1] << 8) |
+ graymap[(sword >> 24) & 0x1];
+ lined[8 * count + 2 * k + 1] = dword;
+ sword <<= 8; /* Move up the next byte */
+ }
+ }
+ /* Cleanup partial word */
+ for (; j < w; j++) {
+ sval = GET_DATA_BIT(lines, j);
+ gval = graymap[sval];
+ SET_DATA_BYTE(lined, j, gval);
+ }
+#if DEBUG_UNROLLING
+ for (j = 0; j < w; j++) {
+ sval = GET_DATA_BIT(lines, j);
+ gval = graymap[sval];
+ CHECK_VALUE(lined, j, gval);
+ }
+#undef CHECK_VALUE
+#endif
+ break;
+ default:
+ return NULL;
+ }
+ }
+ if (graymap)
+ LEPT_FREE(graymap);
+ } else { /* type == REMOVE_CMAP_TO_FULL_COLOR or REMOVE_CMAP_WITH_ALPHA */
+ if ((pixd = pixCreate(w, h, 32)) == NULL) {
+ L_ERROR("pixd not made\n", procName);
+ goto cleanup_arrays;
+ }
+ pixCopyInputFormat(pixd, pixs);
+ pixCopyResolution(pixd, pixs);
+ if (type == REMOVE_CMAP_WITH_ALPHA)
+ pixSetSpp(pixd, 4);
+ datad = pixGetData(pixd);
+ wpld = pixGetWpl(pixd);
+ lut = (l_uint32 *)LEPT_CALLOC(nalloc, sizeof(l_uint32));
+ for (i = 0; i < ncolors; i++) {
+ if (type == REMOVE_CMAP_TO_FULL_COLOR)
+ composeRGBPixel(rmap[i], gmap[i], bmap[i], lut + i);
+ else /* full color plus alpha */
+ composeRGBAPixel(rmap[i], gmap[i], bmap[i], amap[i], lut + i);
+ }
+
+ for (i = 0; i < h; i++) {
+ lines = datas + i * wpls;
+ lined = datad + i * wpld;
+ for (j = 0; j < w; j++) {
+ if (d == 8)
+ sval = GET_DATA_BYTE(lines, j);
+ else if (d == 4)
+ sval = GET_DATA_QBIT(lines, j);
+ else if (d == 2)
+ sval = GET_DATA_DIBIT(lines, j);
+ else /* (d == 1) */
+ sval = GET_DATA_BIT(lines, j);
+ if (sval >= ncolors)
+ L_WARNING("pixel value out of bounds\n", procName);
+ else
+ lined[j] = lut[sval];
+ }
+ }
+ LEPT_FREE(lut);
+ }
+
+cleanup_arrays:
+ LEPT_FREE(rmap);
+ LEPT_FREE(gmap);
+ LEPT_FREE(bmap);
+ LEPT_FREE(amap);
+ return pixd;
+}
+
+
+/*-------------------------------------------------------------*
+ * Add colormap losslessly (8 to 8) *
+ *-------------------------------------------------------------*/
+/*!
+ * \brief pixAddGrayColormap8()
+ *
+ * \param[in] pixs 8 bpp
+ * \return 0 if OK, 1 on error
+ *
+ * <pre>
+ * Notes:
+ * (1) If pixs has a colormap, this is a no-op.
+ * </pre>
+ */
+l_ok
+pixAddGrayColormap8(PIX *pixs)
+{
+PIXCMAP *cmap;
+
+ PROCNAME("pixAddGrayColormap8");
+
+ if (!pixs || pixGetDepth(pixs) != 8)
+ return ERROR_INT("pixs not defined or not 8 bpp", procName, 1);
+ if (pixGetColormap(pixs))
+ return 0;
+
+ cmap = pixcmapCreateLinear(8, 256);
+ pixSetColormap(pixs, cmap);
+ return 0;
+}
+
+
+/*!
+ * \brief pixAddMinimalGrayColormap8()
+ *
+ * \param[in] pixs 8 bpp
+ * \return 0 if OK, 1 on error
+ *
+ * <pre>
+ * Notes:
+ * (1) This generates a colormapped version of the input image
+ * that has the same number of colormap entries as the
+ * input image has unique gray levels.
+ * </pre>
+ */
+PIX *
+pixAddMinimalGrayColormap8(PIX *pixs)
+{
+l_int32 ncolors, w, h, i, j, wpl1, wpld, index, val;
+l_int32 *inta, *revmap;
+l_uint32 *data1, *datad, *line1, *lined;
+PIX *pix1, *pixd;
+PIXCMAP *cmap;
+
+ PROCNAME("pixAddMinimalGrayColormap8");
+
+ if (!pixs || pixGetDepth(pixs) != 8)
+ return (PIX *)ERROR_PTR("pixs undefined or not 8 bpp", procName, NULL);
+
+ /* Eliminate the easy cases */
+ pixNumColors(pixs, 1, &ncolors);
+ cmap = pixGetColormap(pixs);
+ if (cmap) {
+ if (pixcmapGetCount(cmap) == ncolors) /* irreducible */
+ return pixCopy(NULL, pixs);
+ else
+ pix1 = pixRemoveColormap(pixs, REMOVE_CMAP_TO_GRAYSCALE);
+ } else {
+ if (ncolors == 256) {
+ pix1 = pixCopy(NULL, pixs);
+ pixAddGrayColormap8(pix1);
+ return pix1;
+ }
+ pix1 = pixClone(pixs);
+ }
+
+ /* Find the gray levels and make a reverse map */
+ pixGetDimensions(pix1, &w, &h, NULL);
+ data1 = pixGetData(pix1);
+ wpl1 = pixGetWpl(pix1);
+ inta = (l_int32 *)LEPT_CALLOC(256, sizeof(l_int32));
+ for (i = 0; i < h; i++) {
+ line1 = data1 + i * wpl1;
+ for (j = 0; j < w; j++) {
+ val = GET_DATA_BYTE(line1, j);
+ inta[val] = 1;
+ }
+ }
+ cmap = pixcmapCreate(8);
+ revmap = (l_int32 *)LEPT_CALLOC(256, sizeof(l_int32));
+ for (i = 0, index = 0; i < 256; i++) {
+ if (inta[i]) {
+ pixcmapAddColor(cmap, i, i, i);
+ revmap[i] = index++;
+ }
+ }
+
+ /* Set all pixels in pixd to the colormap index */
+ pixd = pixCreateTemplate(pix1);
+ pixSetColormap(pixd, cmap);
+ pixCopyInputFormat(pixd, pixs);
+ pixCopyResolution(pixd, pixs);
+ datad = pixGetData(pixd);
+ wpld = pixGetWpl(pixd);
+ for (i = 0; i < h; i++) {
+ line1 = data1 + i * wpl1;
+ lined = datad + i * wpld;
+ for (j = 0; j < w; j++) {
+ val = GET_DATA_BYTE(line1, j);
+ SET_DATA_BYTE(lined, j, revmap[val]);
+ }
+ }
+
+ pixDestroy(&pix1);
+ LEPT_FREE(inta);
+ LEPT_FREE(revmap);
+ return pixd;
+}
+
+
+/*-------------------------------------------------------------*
+ * Conversion from RGB color to grayscale *
+ *-------------------------------------------------------------*/
+/*!
+ * \brief pixConvertRGBToLuminance()
+ *
+ * \param[in] pixs 32 bpp RGB
+ * \return 8 bpp pix, or NULL on error
+ *
+ * <pre>
+ * Notes:
+ * (1) Use a standard luminance conversion.
+ * </pre>
+ */
+PIX *
+pixConvertRGBToLuminance(PIX *pixs)
+{
+ return pixConvertRGBToGray(pixs, 0.0, 0.0, 0.0);
+}
+
+
+/*!
+ * \brief pixConvertRGBToGrayGeneral()
+ *
+ * \param[in] pixs 32 bpp RGB
+ * \param[in] type color selection flag
+ * \param[in] rwt, gwt, bwt ignored if type != L_SELECT_WEIGHTED;
+ * if used, must sum to 1.0.
+ * \return 8 bpp pix, or NULL on error
+ *
+ * <pre>
+ * Notes:
+ * (1) The color selection flag is one of: L_SELECT_RED, L_SELECT_GREEN,
+ * L_SELECT_BLUE, L_SELECT_MIN, L_SELECT_MAX, L_SELECT_AVERAGE,
+ * L_SELECT_HUE, L_SELECT_SATURATION, L_SELECT_WEIGHTED.
+ * (2) The weights, if used, must all be non-negative and must sum to 1.0.
+ * </pre>
+ */
+PIX *
+pixConvertRGBToGrayGeneral(PIX *pixs,
+ l_int32 type,
+ l_float32 rwt,
+ l_float32 gwt,
+ l_float32 bwt)
+{
+PIX *pix1;
+
+ PROCNAME("pixConvertRGBToGrayGeneral");
+
+ if (!pixs || pixGetDepth(pixs) != 32)
+ return (PIX *)ERROR_PTR("pixs undefined or not 32 bpp", procName, NULL);
+ if (type != L_SELECT_RED && type != L_SELECT_GREEN &&
+ type != L_SELECT_BLUE && type != L_SELECT_MIN &&
+ type != L_SELECT_MAX && type != L_SELECT_AVERAGE &&
+ type != L_SELECT_HUE && type != L_SELECT_SATURATION &&
+ type != L_SELECT_WEIGHTED)
+ return (PIX *)ERROR_PTR("invalid type", procName, NULL);
+
+ if (type == L_SELECT_RED) {
+ pix1 = pixGetRGBComponent(pixs, COLOR_RED);
+ } else if (type == L_SELECT_GREEN) {
+ pix1 = pixGetRGBComponent(pixs, COLOR_GREEN);
+ } else if (type == L_SELECT_BLUE) {
+ pix1 = pixGetRGBComponent(pixs, COLOR_BLUE);
+ } else if (type == L_SELECT_MIN) {
+ pix1 = pixConvertRGBToGrayMinMax(pixs, L_CHOOSE_MIN);
+ } else if (type == L_SELECT_MAX) {
+ pix1 = pixConvertRGBToGrayMinMax(pixs, L_CHOOSE_MAX);
+ } else if (type == L_SELECT_AVERAGE) {
+ pix1 = pixConvertRGBToGray(pixs, 0.34f, 0.33f, 0.33f);
+ } else if (type == L_SELECT_HUE) {
+ pix1 = pixConvertRGBToHue(pixs);
+ } else if (type == L_SELECT_SATURATION) {
+ pix1 = pixConvertRGBToSaturation(pixs);
+ } else { /* L_SELECT_WEIGHTED */
+ if (rwt < 0.0 || gwt < 0.0 || bwt < 0.0)
+ return (PIX *)ERROR_PTR("weights not all >= 0.0", procName, NULL);
+ if (rwt + gwt + bwt != 1.0)
+ return (PIX *)ERROR_PTR("weights don't sum to 1.0", procName, NULL);
+ pix1 = pixConvertRGBToGray(pixs, rwt, gwt, bwt);
+ }
+
+ return pix1;
+}
+
+
+/*!
+ * \brief pixConvertRGBToGray()
+ *
+ * \param[in] pixs 32 bpp RGB
+ * \param[in] rwt, gwt, bwt non-negative; these should add to 1.0,
+ * or use 0.0 for default
+ * \return 8 bpp pix, or NULL on error
+ *
+ * <pre>
+ * Notes:
+ * (1) Use a weighted average of the RGB values.
+ * </pre>
+ */
+PIX *
+pixConvertRGBToGray(PIX *pixs,
+ l_float32 rwt,
+ l_float32 gwt,
+ l_float32 bwt)
+{
+l_int32 i, j, w, h, wpls, wpld, val;
+l_uint32 word;
+l_uint32 *datas, *lines, *datad, *lined;
+l_float32 sum;
+PIX *pixd;
+
+ PROCNAME("pixConvertRGBToGray");
+
+ if (!pixs)
+ return (PIX *)ERROR_PTR("pixs not defined", procName, NULL);
+ if (pixGetDepth(pixs) != 32)
+ return (PIX *)ERROR_PTR("pixs not 32 bpp", procName, NULL);
+ if (rwt < 0.0 || gwt < 0.0 || bwt < 0.0)
+ return (PIX *)ERROR_PTR("weights not all >= 0.0", procName, NULL);
+
+ /* Make sure the sum of weights is 1.0; otherwise, you can get
+ * overflow in the gray value. */
+ if (rwt == 0.0 && gwt == 0.0 && bwt == 0.0) {
+ rwt = L_RED_WEIGHT;
+ gwt = L_GREEN_WEIGHT;
+ bwt = L_BLUE_WEIGHT;
+ }
+ sum = rwt + gwt + bwt;
+ if (L_ABS(sum - 1.0) > 0.0001) { /* maintain ratios with sum == 1.0 */
+ L_WARNING("weights don't sum to 1; maintaining ratios\n", procName);
+ rwt = rwt / sum;
+ gwt = gwt / sum;
+ bwt = bwt / sum;
+ }
+
+ pixGetDimensions(pixs, &w, &h, NULL);
+ datas = pixGetData(pixs);
+ wpls = pixGetWpl(pixs);
+ if ((pixd = pixCreate(w, h, 8)) == NULL)
+ return (PIX *)ERROR_PTR("pixd not made", procName, NULL);
+ pixCopyResolution(pixd, pixs);
+ pixCopyInputFormat(pixd, pixs);
+ datad = pixGetData(pixd);
+ wpld = pixGetWpl(pixd);
+
+ for (i = 0; i < h; i++) {
+ lines = datas + i * wpls;
+ lined = datad + i * wpld;
+ for (j = 0; j < w; j++) {
+ word = *(lines + j);
+ val = (l_int32)(rwt * ((word >> L_RED_SHIFT) & 0xff) +
+ gwt * ((word >> L_GREEN_SHIFT) & 0xff) +
+ bwt * ((word >> L_BLUE_SHIFT) & 0xff) + 0.5);
+ SET_DATA_BYTE(lined, j, val);
+ }
+ }
+
+ return pixd;
+}
+
+
+/*!
+ * \brief pixConvertRGBToGrayFast()
+ *
+ * \param[in] pixs 32 bpp RGB
+ * \return 8 bpp pix, or NULL on error
+ *
+ * <pre>
+ * Notes:
+ * (1) This function should be used if speed of conversion
+ * is paramount, and the green channel can be used as
+ * a fair representative of the RGB intensity. It is
+ * several times faster than pixConvertRGBToGray().
+ * (2) To combine RGB to gray conversion with subsampling,
+ * use pixScaleRGBToGrayFast() instead.
+ * </pre>
+ */
+PIX *
+pixConvertRGBToGrayFast(PIX *pixs)
+{
+l_int32 i, j, w, h, wpls, wpld, val;
+l_uint32 *datas, *lines, *datad, *lined;
+PIX *pixd;
+
+ PROCNAME("pixConvertRGBToGrayFast");
+
+ if (!pixs)
+ return (PIX *)ERROR_PTR("pixs not defined", procName, NULL);
+ if (pixGetDepth(pixs) != 32)
+ return (PIX *)ERROR_PTR("pixs not 32 bpp", procName, NULL);
+
+ pixGetDimensions(pixs, &w, &h, NULL);
+ datas = pixGetData(pixs);
+ wpls = pixGetWpl(pixs);
+ if ((pixd = pixCreate(w, h, 8)) == NULL)
+ return (PIX *)ERROR_PTR("pixd not made", procName, NULL);
+ pixCopyResolution(pixd, pixs);
+ pixCopyInputFormat(pixd, pixs);
+ datad = pixGetData(pixd);
+ wpld = pixGetWpl(pixd);
+
+ for (i = 0; i < h; i++) {
+ lines = datas + i * wpls;
+ lined = datad + i * wpld;
+ for (j = 0; j < w; j++, lines++) {
+ val = ((*lines) >> L_GREEN_SHIFT) & 0xff;
+ SET_DATA_BYTE(lined, j, val);
+ }
+ }
+
+ return pixd;
+}
+
+
+/*!
+ * \brief pixConvertRGBToGrayMinMax()
+ *
+ * \param[in] pixs 32 bpp RGB
+ * \param[in] type L_CHOOSE_MIN, L_CHOOSE_MAX, L_CHOOSE_MAXDIFF,
+ * L_CHOOSE_MIN_BOOST, L_CHOOSE_MAX_BOOST
+ * \return 8 bpp pix, or NULL on error
+ *
+ * <pre>
+ * Notes:
+ * (1) This chooses various components or combinations of them,
+ * from the three RGB sample values. In addition to choosing
+ * the min, max, and maxdiff (difference between max and min),
+ * this also allows boosting the min and max about a reference
+ * value.
+ * (2) The default reference value for boosting the min and max
+ * is 200. This can be changed with l_setNeutralBoostVal()
+ * (3) The result with L_CHOOSE_MAXDIFF is surprisingly sensitive
+ * to a jpeg compression/decompression cycle with quality = 75.
+ * </pre>
+ */
+PIX *
+pixConvertRGBToGrayMinMax(PIX *pixs,
+ l_int32 type)
+{
+l_int32 i, j, w, h, wpls, wpld, rval, gval, bval, val, minval, maxval;
+l_uint32 *datas, *lines, *datad, *lined;
+PIX *pixd;
+
+ PROCNAME("pixConvertRGBToGrayMinMax");
+
+ if (!pixs)
+ return (PIX *)ERROR_PTR("pixs not defined", procName, NULL);
+ if (pixGetDepth(pixs) != 32)
+ return (PIX *)ERROR_PTR("pixs not 32 bpp", procName, NULL);
+ if (type != L_CHOOSE_MIN && type != L_CHOOSE_MAX &&
+ type != L_CHOOSE_MAXDIFF && type != L_CHOOSE_MIN_BOOST &&
+ type != L_CHOOSE_MAX_BOOST)
+ return (PIX *)ERROR_PTR("invalid type", procName, NULL);
+
+ pixGetDimensions(pixs, &w, &h, NULL);
+ datas = pixGetData(pixs);
+ wpls = pixGetWpl(pixs);
+ if ((pixd = pixCreate(w, h, 8)) == NULL)
+ return (PIX *)ERROR_PTR("pixd not made", procName, NULL);
+ pixCopyResolution(pixd, pixs);
+ pixCopyInputFormat(pixd, pixs);
+ datad = pixGetData(pixd);
+ wpld = pixGetWpl(pixd);
+
+ for (i = 0; i < h; i++) {
+ lines = datas + i * wpls;
+ lined = datad + i * wpld;
+ for (j = 0; j < w; j++) {
+ extractRGBValues(lines[j], &rval, &gval, &bval);
+ if (type == L_CHOOSE_MIN || type == L_CHOOSE_MIN_BOOST) {
+ val = L_MIN(rval, gval);
+ val = L_MIN(val, bval);
+ if (type == L_CHOOSE_MIN_BOOST)
+ val = L_MIN(255, (val * val) / var_NEUTRAL_BOOST_VAL);
+ } else if (type == L_CHOOSE_MAX || type == L_CHOOSE_MAX_BOOST) {
+ val = L_MAX(rval, gval);
+ val = L_MAX(val, bval);
+ if (type == L_CHOOSE_MAX_BOOST)
+ val = L_MIN(255, (val * val) / var_NEUTRAL_BOOST_VAL);
+ } else { /* L_CHOOSE_MAXDIFF */
+ minval = L_MIN(rval, gval);
+ minval = L_MIN(minval, bval);
+ maxval = L_MAX(rval, gval);
+ maxval = L_MAX(maxval, bval);
+ val = maxval - minval;
+ }
+ SET_DATA_BYTE(lined, j, val);
+ }
+ }
+
+ return pixd;
+}
+
+
+/*!
+ * \brief pixConvertRGBToGraySatBoost()
+ *
+ * \param[in] pixs 32 bpp rgb
+ * \param[in] refval between 1 and 255; typ. less than 128
+ * \return pixd 8 bpp, or NULL on error
+ *
+ * <pre>
+ * Notes:
+ * (1) This returns the max component value, boosted by
+ * the saturation. The maximum boost occurs where
+ * the maximum component value is equal to some reference value.
+ * This particular weighting is due to Dany Qumsiyeh.
+ * (2) For gray pixels (zero saturation), this returns
+ * the intensity of any component.
+ * (3) For fully saturated pixels ('fullsat'), this rises linearly
+ * with the max value and has a slope equal to 255 divided
+ * by the reference value; for a max value greater than
+ * the reference value, it is clipped to 255.
+ * (4) For saturation values in between, the output is a linear
+ * combination of (2) and (3), weighted by saturation.
+ * It falls between these two curves, and does not exceed 255.
+ * (5) This can be useful for distinguishing an object that has nonzero
+ * saturation from a gray background. For this, the refval
+ * should be chosen near the expected value of the background,
+ * to achieve maximum saturation boost there.
+ * </pre>
+ */
+PIX *
+pixConvertRGBToGraySatBoost(PIX *pixs,
+ l_int32 refval)
+{
+l_int32 w, h, d, i, j, wplt, wpld;
+l_int32 rval, gval, bval, sval, minrg, maxrg, min, max, delta;
+l_int32 fullsat, newval;
+l_float32 *invmax, *ratio;
+l_uint32 *linet, *lined, *datat, *datad;
+PIX *pixt, *pixd;
+
+ PROCNAME("pixConvertRGBToGraySatBoost");
+
+ if (!pixs)
+ return (PIX *)ERROR_PTR("pixs not defined", procName, NULL);
+ pixGetDimensions(pixs, &w, &h, &d);
+ if (d != 32 && !pixGetColormap(pixs))
+ return (PIX *)ERROR_PTR("pixs not cmapped or rgb", procName, NULL);
+ if (refval < 1 || refval > 255)
+ return (PIX *)ERROR_PTR("refval not in [1 ... 255]", procName, NULL);
+
+ pixt = pixRemoveColormap(pixs, REMOVE_CMAP_TO_FULL_COLOR);
+ pixd = pixCreate(w, h, 8);
+ pixCopyResolution(pixd, pixs);
+ pixCopyInputFormat(pixd, pixs);
+ wplt = pixGetWpl(pixt);
+ datat = pixGetData(pixt);
+ wpld = pixGetWpl(pixd);
+ datad = pixGetData(pixd);
+ invmax = (l_float32 *)LEPT_CALLOC(256, sizeof(l_float32));
+ ratio = (l_float32 *)LEPT_CALLOC(256, sizeof(l_float32));
+ for (i = 1; i < 256; i++) { /* i == 0 --> delta = sval = newval = 0 */
+ invmax[i] = 1.0 / (l_float32)i;
+ ratio[i] = (l_float32)i / (l_float32)refval;
+ }
+ for (i = 0; i < h; i++) {
+ linet = datat + i * wplt;
+ lined = datad + i * wpld;
+ for (j = 0; j < w; j++) {
+ extractRGBValues(linet[j], &rval, &gval, &bval);
+ minrg = L_MIN(rval, gval);
+ min = L_MIN(minrg, bval);
+ maxrg = L_MAX(rval, gval);
+ max = L_MAX(maxrg, bval);
+ delta = max - min;
+ if (delta == 0) /* gray; no chroma */
+ sval = 0;
+ else
+ sval = (l_int32)(255. * (l_float32)delta * invmax[max] + 0.5);
+
+ fullsat = L_MIN(255, 255 * ratio[max]);
+ newval = (sval * fullsat + (255 - sval) * max) / 255;
+ SET_DATA_BYTE(lined, j, newval);
+ }
+ }
+
+ pixDestroy(&pixt);
+ LEPT_FREE(invmax);
+ LEPT_FREE(ratio);
+ return pixd;
+}
+
+
+/*!
+ * \brief pixConvertRGBToGrayArb()
+ *
+ * \param[in] pixs 32 bpp RGB
+ * \param[in] rc, gc, bc arithmetic factors; can be negative
+ * \return 8 bpp pix, or NULL on error
+ *
+ * <pre>
+ * Notes:
+ * (1) This converts to gray using an arbitrary linear combination
+ * of the rgb color components. It differs from pixConvertToGray(),
+ * which uses only positive coefficients that sum to 1.
+ * (2) The gray output values are clipped to 0 and 255.
+ * </pre>
+ */
+PIX *
+pixConvertRGBToGrayArb(PIX *pixs,
+ l_float32 rc,
+ l_float32 gc,
+ l_float32 bc)
+{
+l_int32 i, j, w, h, wpls, wpld, rval, gval, bval, val;
+l_uint32 *datas, *lines, *datad, *lined;
+PIX *pixd;
+
+ PROCNAME("pixConvertRGBToGrayArb");
+
+ if (!pixs)
+ return (PIX *)ERROR_PTR("pixs not defined", procName, NULL);
+ if (pixGetDepth(pixs) != 32)
+ return (PIX *)ERROR_PTR("pixs not 32 bpp", procName, NULL);
+ if (rc <= 0 && gc <= 0 && bc <= 0)
+ return (PIX *)ERROR_PTR("all coefficients <= 0", procName, NULL);
+
+ pixGetDimensions(pixs, &w, &h, NULL);
+ datas = pixGetData(pixs);
+ wpls = pixGetWpl(pixs);
+ if ((pixd = pixCreate(w, h, 8)) == NULL)
+ return (PIX *)ERROR_PTR("pixd not made", procName, NULL);
+ pixCopyResolution(pixd, pixs);
+ pixCopyInputFormat(pixd, pixs);
+ datad = pixGetData(pixd);
+ wpld = pixGetWpl(pixd);
+
+ for (i = 0; i < h; i++) {
+ lines = datas + i * wpls;
+ lined = datad + i * wpld;
+ for (j = 0; j < w; j++) {
+ extractRGBValues(lines[j], &rval, &gval, &bval);
+ val = (l_int32)(rc * rval + gc * gval + bc * bval);
+ val = L_MIN(255, L_MAX(0, val));
+ SET_DATA_BYTE(lined, j, val);
+ }
+ }
+
+ return pixd;
+}
+
+
+/*!
+ * \brief pixConvertRGBToBinaryArb()
+ *
+ * \param[in] pixs 32 bpp RGB
+ * \param[in] rc, gc, bc arithmetic factors; can be negative
+ * \param[in] thresh binarization threshold
+ * \param[in] relation L_SELECT_IF_LT, L_SELECT_IF_GT
+ * L_SELECT_IF_LTE, L_SELECT_IF_GTE
+ * \return 1 bpp pix, or NULL on error
+ *
+ * <pre>
+ * Notes:
+ * (1) This makes a 1 bpp mask from an RGB image, using an arbitrary
+ * linear combination of the rgb color components, along with
+ * a threshold and a selection choice of the gray value relative
+ * to %thresh.
+ * </pre>
+ */
+PIX *
+pixConvertRGBToBinaryArb(PIX *pixs,
+ l_float32 rc,
+ l_float32 gc,
+ l_float32 bc,
+ l_int32 thresh,
+ l_int32 relation)
+{
+l_int32 threshold;
+PIX *pix1, *pix2;
+
+ PROCNAME("pixConvertRGBToBinaryArb");
+
+ if (!pixs || pixGetDepth(pixs) != 32)
+ return (PIX *)ERROR_PTR("pixs undefined or not 32 bpp", procName, NULL);
+ if (rc <= 0 && gc <= 0 && bc <= 0)
+ return (PIX *)ERROR_PTR("all coefficients <= 0", procName, NULL);
+ if (relation != L_SELECT_IF_LT && relation != L_SELECT_IF_GT &&
+ relation != L_SELECT_IF_LTE && relation != L_SELECT_IF_GTE)
+ return (PIX *)ERROR_PTR("invalid relation", procName, NULL);
+
+ pix1 = pixConvertRGBToGrayArb(pixs, rc, gc, bc);
+ threshold = (relation == L_SELECT_IF_LTE || relation == L_SELECT_IF_GT) ?
+ thresh : thresh + 1;
+ pix2 = pixThresholdToBinary(pix1, threshold);
+ if (relation == L_SELECT_IF_GT || relation == L_SELECT_IF_GTE)
+ pixInvert(pix2, pix2);
+ pixDestroy(&pix1);
+ return pix2;
+}
+
+
+/*---------------------------------------------------------------------------*
+ * Conversion from grayscale to colormap *
+ *---------------------------------------------------------------------------*/
+/*!
+ * \brief pixConvertGrayToColormap()
+ *
+ * \param[in] pixs 2, 4 or 8 bpp grayscale
+ * \return pixd 2, 4 or 8 bpp with colormap, or NULL on error
+ *
+ * <pre>
+ * Notes:
+ * (1) This is a simple interface for adding a colormap to a
+ * 2, 4 or 8 bpp grayscale image without causing any
+ * quantization. There is some similarity to operations
+ * in grayquant.c, such as pixThresholdOn8bpp(), where
+ * the emphasis is on quantization with an arbitrary number
+ * of levels, and a colormap is an option.
+ * (2) Returns a copy if pixs already has a colormap.
+ * (3) For 8 bpp src, this is a lossless transformation.
+ * (4) For 2 and 4 bpp src, this generates a colormap that
+ * assumes full coverage of the gray space, with equally spaced
+ * levels: 4 levels for d = 2 and 16 levels for d = 4.
+ * (5) In all cases, the depth of the dest is the same as the src.
+ * </pre>
+ */
+PIX *
+pixConvertGrayToColormap(PIX *pixs)
+{
+l_int32 d;
+PIX *pixd;
+PIXCMAP *cmap;
+
+ PROCNAME("pixConvertGrayToColormap");
+
+ if (!pixs)
+ return (PIX *)ERROR_PTR("pixs not defined", procName, NULL);
+ d = pixGetDepth(pixs);
+ if (d != 2 && d != 4 && d != 8)
+ return (PIX *)ERROR_PTR("pixs not 2, 4 or 8 bpp", procName, NULL);
+
+ if (pixGetColormap(pixs)) {
+ L_INFO("pixs already has a colormap\n", procName);
+ return pixCopy(NULL, pixs);
+ }
+
+ if (d == 8) /* lossless conversion */
+ return pixConvertGrayToColormap8(pixs, 2);
+
+ /* Build a cmap with equally spaced target values over the
+ * full 8 bpp range. */
+ pixd = pixCopy(NULL, pixs);
+ cmap = pixcmapCreateLinear(d, 1 << d);
+ pixSetColormap(pixd, cmap);
+ pixCopyInputFormat(pixd, pixs);
+ return pixd;
+}
+
+
+/*!
+ * \brief pixConvertGrayToColormap8()
+ *
+ * \param[in] pixs 8 bpp grayscale
+ * \param[in] mindepth of pixd; valid values are 2, 4 and 8
+ * \return pixd 2, 4 or 8 bpp with colormap, or NULL on error
+ *
+ * <pre>
+ * Notes:
+ * (1) Returns a copy if pixs already has a colormap.
+ * (2) This is a lossless transformation; there is no quantization.
+ * We compute the number of different gray values in pixs,
+ * and construct a colormap that has exactly these values.
+ * (3) 'mindepth' is the minimum depth of pixd. If mindepth == 8,
+ * pixd will always be 8 bpp. Let the number of different
+ * gray values in pixs be ngray. If mindepth == 4, we attempt
+ * to save pixd as a 4 bpp image, but if ngray > 16,
+ * pixd must be 8 bpp. Likewise, if mindepth == 2,
+ * the depth of pixd will be 2 if ngray <= 4 and 4 if ngray > 4
+ * but <= 16.
+ * </pre>
+ */
+PIX *
+pixConvertGrayToColormap8(PIX *pixs,
+ l_int32 mindepth)
+{
+l_int32 ncolors, w, h, depth, i, j, wpls, wpld;
+l_int32 index, num, val, newval;
+l_int32 array[256];
+l_uint32 *lines, *lined, *datas, *datad;
+NUMA *na;
+PIX *pixd;
+PIXCMAP *cmap;
+
+ PROCNAME("pixConvertGrayToColormap8");
+
+ if (!pixs)
+ return (PIX *)ERROR_PTR("pixs not defined", procName, NULL);
+ if (pixGetDepth(pixs) != 8)
+ return (PIX *)ERROR_PTR("pixs not 8 bpp", procName, NULL);
+ if (mindepth != 2 && mindepth != 4 && mindepth != 8) {
+ L_WARNING("invalid value of mindepth; setting to 8\n", procName);
+ mindepth = 8;
+ }
+
+ if (pixGetColormap(pixs)) {
+ L_INFO("pixs already has a colormap\n", procName);
+ return pixCopy(NULL, pixs);
+ }
+
+ na = pixGetGrayHistogram(pixs, 1);
+ numaGetCountRelativeToZero(na, L_GREATER_THAN_ZERO, &ncolors);
+ if (mindepth == 8 || ncolors > 16)
+ depth = 8;
+ else if (mindepth == 4 || ncolors > 4)
+ depth = 4;
+ else
+ depth = 2;
+
+ pixGetDimensions(pixs, &w, &h, NULL);
+ pixd = pixCreate(w, h, depth);
+ cmap = pixcmapCreate(depth);
+ pixSetColormap(pixd, cmap);
+ pixCopyInputFormat(pixd, pixs);
+ pixCopyResolution(pixd, pixs);
+
+ index = 0;
+ for (i = 0; i < 256; i++) {
+ array[i] = 0; /* only to quiet the static checker */
+ numaGetIValue(na, i, &num);
+ if (num > 0) {
+ pixcmapAddColor(cmap, i, i, i);
+ array[i] = index;
+ index++;
+ }
+ }
+
+ datas = pixGetData(pixs);
+ wpls = pixGetWpl(pixs);
+ datad = pixGetData(pixd);
+ wpld = pixGetWpl(pixd);
+ for (i = 0; i < h; i++) {
+ lines = datas + i * wpls;
+ lined = datad + i * wpld;
+ for (j = 0; j < w; j++) {
+ val = GET_DATA_BYTE(lines, j);
+ newval = array[val];
+ if (depth == 2)
+ SET_DATA_DIBIT(lined, j, newval);
+ else if (depth == 4)
+ SET_DATA_QBIT(lined, j, newval);
+ else /* depth == 8 */
+ SET_DATA_BYTE(lined, j, newval);
+ }
+ }
+
+ numaDestroy(&na);
+ return pixd;
+}
+
+
+/*---------------------------------------------------------------------------*
+ * Colorizing conversion from grayscale to color *
+ *---------------------------------------------------------------------------*/
+/*!
+ * \brief pixColorizeGray()
+ *
+ * \param[in] pixs 8 bpp gray; 2, 4 or 8 bpp colormapped
+ * \param[in] color 32 bit rgba pixel
+ * \param[in] cmapflag 1 for result to have colormap; 0 for RGB
+ * \return pixd 8 bpp colormapped or 32 bpp rgb, or NULL on error
+ *
+ * <pre>
+ * Notes:
+ * (1) This applies the specific color to the grayscale image.
+ * (2) If pixs already has a colormap, it is removed to gray
+ * before colorizing.
+ * </pre>
+ */
+PIX *
+pixColorizeGray(PIX *pixs,
+ l_uint32 color,
+ l_int32 cmapflag)
+{
+l_int32 i, j, w, h, wplt, wpld, val8;
+l_uint32 *datad, *datat, *lined, *linet, *tab;
+PIX *pixt, *pixd;
+PIXCMAP *cmap;
+
+ PROCNAME("pixColorizeGray");
+
+ if (!pixs)
+ return (PIX *)ERROR_PTR("pixs not defined", procName, NULL);
+ if (pixGetDepth(pixs) != 8 && !pixGetColormap(pixs))
+ return (PIX *)ERROR_PTR("pixs not 8 bpp or cmapped", procName, NULL);
+
+ if (pixGetColormap(pixs))
+ pixt = pixRemoveColormap(pixs, REMOVE_CMAP_TO_GRAYSCALE);
+ else
+ pixt = pixClone(pixs);
+
+ cmap = pixcmapGrayToColor(color);
+ if (cmapflag) {
+ pixd = pixCopy(NULL, pixt);
+ pixSetColormap(pixd, cmap);
+ pixDestroy(&pixt);
+ return pixd;
+ }
+
+ /* Make an RGB pix */
+ pixcmapToRGBTable(cmap, &tab, NULL);
+ pixGetDimensions(pixt, &w, &h, NULL);
+ pixd = pixCreate(w, h, 32);
+ pixCopyResolution(pixd, pixs);
+ pixCopyInputFormat(pixd, pixs);
+ datad = pixGetData(pixd);
+ wpld = pixGetWpl(pixd);
+ datat = pixGetData(pixt);
+ wplt = pixGetWpl(pixt);
+ for (i = 0; i < h; i++) {
+ lined = datad + i * wpld;
+ linet = datat + i * wplt;
+ for (j = 0; j < w; j++) {
+ val8 = GET_DATA_BYTE(linet, j);
+ lined[j] = tab[val8];
+ }
+ }
+
+ pixDestroy(&pixt);
+ pixcmapDestroy(&cmap);
+ LEPT_FREE(tab);
+ return pixd;
+}
+
+
+/*---------------------------------------------------------------------------*
+ * Conversion from RGB color to colormap *
+ *---------------------------------------------------------------------------*/
+/*!
+ * \brief pixConvertRGBToColormap()
+ *
+ * \param[in] pixs 32 bpp rgb
+ * \param[in] ditherflag 1 to dither, 0 otherwise
+ * \return pixd 2, 4 or 8 bpp with colormap, or NULL on error
+ *
+ * <pre>
+ * Notes:
+ * (1) This function has two relatively simple modes of color
+ * quantization:
+ * (a) If the image is made orthographically and has not more
+ * than 256 'colors' at the level 4 octcube leaves,
+ * it is quantized nearly exactly. The ditherflag
+ * is ignored.
+ * (b) Most natural images have more than 256 different colors;
+ * in that case we use adaptive octree quantization,
+ * with dithering if requested.
+ * (2) If there are not more than 256 occupied level 4 octcubes,
+ * the color in the colormap that represents all pixels in
+ * one of those octcubes is given by the first pixel that
+ * falls into that octcube.
+ * (3) Dithering gives better visual results on images where
+ * there is a color wash (a slow variation of color), but it
+ * is about twice as slow and results in significantly larger
+ * files when losslessly compressed (e.g., into png).
+ * </pre>
+ */
+PIX *
+pixConvertRGBToColormap(PIX *pixs,
+ l_int32 ditherflag)
+{
+l_int32 ncolors;
+NUMA *na;
+PIX *pixd;
+
+ PROCNAME("pixConvertRGBToColormap");
+
+ if (!pixs)
+ return (PIX *)ERROR_PTR("pixs not defined", procName, NULL);
+ if (pixGetDepth(pixs) != 32)
+ return (PIX *)ERROR_PTR("pixs not 32 bpp", procName, NULL);
+ if (pixGetSpp(pixs) == 4)
+ L_WARNING("pixs has alpha; removing\n", procName);
+
+ /* Get the histogram and count the number of occupied level 4
+ * leaf octcubes. We don't yet know if this is the number of
+ * actual colors, but if it's not, all pixels falling into
+ * the same leaf octcube will be assigned to the color of the
+ * first pixel that lands there. */
+ na = pixOctcubeHistogram(pixs, 4, &ncolors);
+
+ /* If 256 or fewer occupied leaf octcubes, quantize to those octcubes */
+ if (ncolors <= 256) {
+ pixd = pixFewColorsOctcubeQuant2(pixs, 4, na, ncolors, NULL);
+ pixCopyInputFormat(pixd, pixs);
+ numaDestroy(&na);
+ return pixd;
+ }
+
+ /* There are too many occupied leaf octcubes to be represented
+ * directly in a colormap. Fall back to octree quantization,
+ * optionally with dithering. */
+ numaDestroy(&na);
+ if (ditherflag)
+ L_INFO("More than 256 colors; using octree quant with dithering\n",
+ procName);
+ else
+ L_INFO("More than 256 colors; using octree quant; no dithering\n",
+ procName);
+ return pixOctreeColorQuant(pixs, 240, ditherflag);
+}
+
+
+/*---------------------------------------------------------------------------*
+ * Conversion from colormap to 1 bpp *
+ *---------------------------------------------------------------------------*/
+/*!
+ * \brief pixConvertCmapTo1()
+ *
+ * \param[in] pixs cmapped
+ * \return pixd 1 bpp, or NULL on error
+ *
+ * <pre>
+ * Notes:
+ * (1) This is an extreme color quantizer. It decides which
+ * colors map to FG (black) and which to BG (white).
+ * (2) This uses two heuristics to make the decision:
+ * (a) colors similar to each other are likely to be in the same class
+ * (b) there is usually much less FG than BG.
+ * </pre>
+ */
+PIX *
+pixConvertCmapTo1(PIX *pixs)
+{
+l_int32 i, j, nc, w, h, imin, imax, factor, wpl1, wpld;
+l_int32 index, rmin, gmin, bmin, rmax, gmax, bmax, dmin, dmax;
+l_float32 minfract, ifract;
+l_int32 *lut;
+l_uint32 *line1, *lined, *data1, *datad;
+NUMA *na1, *na2; /* histograms */
+PIX *pix1, *pixd;
+PIXCMAP *cmap;
+
+ PROCNAME("pixConvertCmapTo1");
+
+ if (!pixs)
+ return (PIX *)ERROR_PTR("pixs not defined", procName, NULL);
+ if ((cmap = pixGetColormap(pixs)) == NULL)
+ return (PIX *)ERROR_PTR("no colormap", procName, NULL);
+
+ /* Select target colors for the two classes. Find the
+ * colors with smallest and largest average component values.
+ * The smallest is class 0 and the largest is class 1. */
+ pixcmapGetRangeValues(cmap, L_SELECT_AVERAGE, NULL, NULL, &imin, &imax);
+ pixcmapGetColor(cmap, imin, &rmin, &gmin, &bmin);
+ pixcmapGetColor(cmap, imax, &rmax, &gmax, &bmax);
+ nc = pixcmapGetCount(cmap);
+
+ /* Assign colors to the two classes. The histogram is
+ * initialized to 0, so any colors not found when computing
+ * the sampled histogram will get zero weight in minfract. */
+ if ((lut = (l_int32 *)LEPT_CALLOC(nc, sizeof(l_int32))) == NULL)
+ return (PIX *)ERROR_PTR("calloc fail for lut", procName, NULL);
+ pixGetDimensions(pixs, &w, &h, NULL);
+ factor = L_MAX(1, (l_int32)sqrt((l_float64)(w * h) / 50000. + 0.5));
+ na1 = pixGetCmapHistogram(pixs, factor);
+ na2 = numaNormalizeHistogram(na1, 1.0);
+ minfract = 0.0;
+ for (i = 0; i < nc; i++) {
+ numaGetFValue(na2, i, &ifract);
+ pixcmapGetDistanceToColor(cmap, i, rmin, gmin, bmin, &dmin);
+ pixcmapGetDistanceToColor(cmap, i, rmax, gmax, bmax, &dmax);
+ if (dmin < dmax) { /* closer to dark extreme value */
+ lut[i] = 1; /* black pixel in 1 bpp image */
+ minfract += ifract;
+ }
+ }
+ numaDestroy(&na1);
+ numaDestroy(&na2);
+
+ /* Generate the output binarized image */
+ pix1 = pixConvertTo8(pixs, 1);
+ pixd = pixCreate(w, h, 1);
+ data1 = pixGetData(pix1);
+ datad = pixGetData(pixd);
+ wpl1 = pixGetWpl(pix1);
+ wpld = pixGetWpl(pixd);
+ for (i = 0; i < h; i++) {
+ line1 = data1 + i * wpl1;
+ lined = datad + i * wpld;
+ for (j = 0; j < w; j++) {
+ index = GET_DATA_BYTE(line1, j);
+ if (lut[index] == 1) SET_DATA_BIT(lined, j);
+ }
+ }
+ pixDestroy(&pix1);
+ LEPT_FREE(lut);
+
+ /* We expect minfract (the dark colors) to be less than 0.5.
+ * If that is not the case, invert pixd. */
+ if (minfract > 0.5) {
+ L_INFO("minfract = %5.3f; inverting\n", procName, minfract);
+ pixInvert(pixd, pixd);
+ }
+
+ return pixd;
+}
+
+
+/*---------------------------------------------------------------------------*
+ * Quantization for relatively small number of colors in source *
+ *---------------------------------------------------------------------------*/
+/*!
+ * \brief pixQuantizeIfFewColors()
+ *
+ * \param[in] pixs 8 bpp gray or 32 bpp rgb
+ * \param[in] maxcolors max number of colors allowed to be returned
+ * from pixColorsForQuantization();
+ * use 0 for default
+ * \param[in] mingraycolors min number of gray levels that a grayscale
+ * image is quantized to; use 0 for default
+ * \param[in] octlevel for octcube quantization: 3 or 4
+ * \param[out] ppixd 2,4 or 8 bpp quantized; null if too many colors
+ * \return 0 if OK, 1 on error or if pixs can't be quantized into
+ * a small number of colors.
+ *
+ * <pre>
+ * Notes:
+ * (1) This is a wrapper that tests if the pix can be quantized
+ * with good quality using a small number of colors. If so,
+ * it does the quantization, defining a colormap and using
+ * pixels whose value is an index into the colormap.
+ * (2) If the image has color, it is quantized with 8 bpp pixels.
+ * If the image is essentially grayscale, the pixels are
+ * either 4 or 8 bpp, depending on the size of the required
+ * colormap.
+ * (3) %octlevel = 4 generates a larger colormap and larger
+ * compressed image than %octlevel = 3. If image quality is
+ * important, you should use %octlevel = 4.
+ * (4) If the image already has a colormap, it returns a clone.
+ * </pre>
+ */
+l_ok
+pixQuantizeIfFewColors(PIX *pixs,
+ l_int32 maxcolors,
+ l_int32 mingraycolors,
+ l_int32 octlevel,
+ PIX **ppixd)
+{
+l_int32 d, ncolors, iscolor, graycolors;
+PIX *pixg, *pixd;
+
+ PROCNAME("pixQuantizeIfFewColors");
+
+ if (!ppixd)
+ return ERROR_INT("&pixd not defined", procName, 1);
+ *ppixd = NULL;
+ if (!pixs)
+ return ERROR_INT("pixs not defined", procName, 1);
+ d = pixGetDepth(pixs);
+ if (d != 8 && d != 32)
+ return ERROR_INT("pixs not defined", procName, 1);
+ if (pixGetColormap(pixs) != NULL) {
+ *ppixd = pixClone(pixs);
+ return 0;
+ }
+ if (maxcolors <= 0)
+ maxcolors = 15; /* default */
+ if (maxcolors > 50)
+ L_WARNING("maxcolors > 50; very large!\n", procName);
+ if (mingraycolors <= 0)
+ mingraycolors = 10; /* default */
+ if (mingraycolors > 30)
+ L_WARNING("mingraycolors > 30; very large!\n", procName);
+ if (octlevel != 3 && octlevel != 4) {
+ L_WARNING("invalid octlevel; setting to 3\n", procName);
+ octlevel = 3;
+ }
+
+ /* Test the number of colors. For color, the octcube leaves
+ * are at level 4. */
+ pixColorsForQuantization(pixs, 0, &ncolors, &iscolor, 0);
+ if (ncolors > maxcolors)
+ return ERROR_INT("too many colors", procName, 1);
+
+ /* Quantize!
+ * (1) For color:
+ * If octlevel == 4, try to quantize to an octree where
+ * the octcube leaves are at level 4. If that fails,
+ * back off to level 3.
+ * If octlevel == 3, quantize to level 3 directly.
+ * For level 3, the quality is usually good enough and there
+ * is negligible chance of getting more than 256 colors.
+ * (2) For grayscale, multiply ncolors by 1.5 for extra quality,
+ * but use at least mingraycolors and not more than 256. */
+ if (iscolor) {
+ pixd = pixFewColorsOctcubeQuant1(pixs, octlevel);
+ if (!pixd) { /* backoff */
+ pixd = pixFewColorsOctcubeQuant1(pixs, octlevel - 1);
+ if (octlevel == 3) /* shouldn't happen */
+ L_WARNING("quantized at level 2; low quality\n", procName);
+ }
+ } else { /* image is really grayscale */
+ if (d == 32)
+ pixg = pixConvertRGBToLuminance(pixs);
+ else
+ pixg = pixClone(pixs);
+ graycolors = L_MAX(mingraycolors, (l_int32)(1.5 * ncolors));
+ graycolors = L_MIN(graycolors, 256);
+ if (graycolors < 16)
+ pixd = pixThresholdTo4bpp(pixg, graycolors, 1);
+ else
+ pixd = pixThresholdOn8bpp(pixg, graycolors, 1);
+ pixDestroy(&pixg);
+ }
+ *ppixd = pixd;
+
+ if (!pixd)
+ return ERROR_INT("pixd not made", procName, 1);
+ pixCopyInputFormat(pixd, pixs);
+ return 0;
+}
+
+
+
+/*---------------------------------------------------------------------------*
+ * Conversion from 16 bpp to 8 bpp *
+ *---------------------------------------------------------------------------*/
+/*!
+ * \brief pixConvert16To8()
+ *
+ * \param[in] pixs 16 bpp
+ * \param[in] type L_LS_BYTE, L_MS_BYTE, L_AUTO_BYTE, L_CLIP_TO_FF
+ * \return pixd 8 bpp, or NULL on error
+ *
+ * <pre>
+ * Notes:
+ * (1) With L_AUTO_BYTE, if the max pixel value is greater than 255,
+ * use the MSB; otherwise, use the LSB.
+ * (2) With L_CLIP_TO_FF, use min(pixel-value, 0xff) for each
+ * 16-bit src pixel.
+ * </pre>
+ */
+PIX *
+pixConvert16To8(PIX *pixs,
+ l_int32 type)
+{
+l_uint16 dword;
+l_int32 w, h, wpls, wpld, i, j, val, use_lsb;
+l_uint32 sword, first, second;
+l_uint32 *datas, *datad, *lines, *lined;
+PIX *pixd;
+
+ PROCNAME("pixConvert16To8");
+
+ if (!pixs)
+ return (PIX *)ERROR_PTR("pixs not defined", procName, NULL);
+ if (pixGetDepth(pixs) != 16)
+ return (PIX *)ERROR_PTR("pixs not 16 bpp", procName, NULL);
+ if (type != L_LS_BYTE && type != L_MS_BYTE &&
+ type != L_AUTO_BYTE && type != L_CLIP_TO_FF)
+ return (PIX *)ERROR_PTR("invalid type", procName, NULL);
+
+ pixGetDimensions(pixs, &w, &h, NULL);
+ if ((pixd = pixCreate(w, h, 8)) == NULL)
+ return (PIX *)ERROR_PTR("pixd not made", procName, NULL);
+ pixCopyInputFormat(pixd, pixs);
+ pixCopyResolution(pixd, pixs);
+ wpls = pixGetWpl(pixs);
+ datas = pixGetData(pixs);
+ wpld = pixGetWpl(pixd);
+ datad = pixGetData(pixd);
+
+ if (type == L_AUTO_BYTE) {
+ use_lsb = TRUE;
+ for (i = 0; i < h; i++) {
+ lines = datas + i * wpls;
+ for (j = 0; j < wpls; j++) {
+ val = GET_DATA_TWO_BYTES(lines, j);
+ if (val > 255) {
+ use_lsb = FALSE;
+ break;
+ }
+ }
+ if (!use_lsb) break;
+ }
+ type = (use_lsb) ? L_LS_BYTE : L_MS_BYTE;
+ }
+
+ /* Convert 2 pixels at a time */
+ for (i = 0; i < h; i++) {
+ lines = datas + i * wpls;
+ lined = datad + i * wpld;
+ if (type == L_LS_BYTE) {
+ for (j = 0; j < wpls; j++) {
+ sword = *(lines + j);
+ dword = ((sword >> 8) & 0xff00) | (sword & 0xff);
+ SET_DATA_TWO_BYTES(lined, j, dword);
+ }
+ } else if (type == L_MS_BYTE) {
+ for (j = 0; j < wpls; j++) {
+ sword = *(lines + j);
+ dword = ((sword >> 16) & 0xff00) | ((sword >> 8) & 0xff);
+ SET_DATA_TWO_BYTES(lined, j, dword);
+ }
+ } else { /* type == L_CLIP_TO_FF */
+ for (j = 0; j < wpls; j++) {
+ sword = *(lines + j);
+ first = (sword >> 24) ? 255 : ((sword >> 16) & 0xff);
+ second = ((sword >> 8) & 0xff) ? 255 : (sword & 0xff);
+ dword = (first << 8) | second;
+ SET_DATA_TWO_BYTES(lined, j, dword);
+ }
+ }
+ }
+
+ return pixd;
+}
+
+
+/*---------------------------------------------------------------------------*
+ * Conversion from grayscale to false color
+ *---------------------------------------------------------------------------*/
+/*!
+ * \brief pixConvertGrayToFalseColor()
+ *
+ * \param[in] pixs 8 or 16 bpp grayscale
+ * \param[in] gamma (factor) 0.0 or 1.0 for default; > 1.0 for brighter;
+ * 2.0 is quite nice
+ * \return pixd 8 bpp with colormap, or NULL on error
+ *
+ * <pre>
+ * Notes:
+ * (1) For 8 bpp input, this simply adds a colormap to the input image.
+ * (2) For 16 bpp input, it first converts to 8 bpp, using the MSB,
+ * and then adds the colormap.
+ * (3) The colormap is modeled after the Matlab "jet" configuration.
+ * </pre>
+ */
+PIX *
+pixConvertGrayToFalseColor(PIX *pixs,
+ l_float32 gamma)
+{
+l_int32 d;
+PIX *pixd;
+PIXCMAP *cmap;
+
+ PROCNAME("pixConvertGrayToFalseColor");
+
+ if (!pixs)
+ return (PIX *)ERROR_PTR("pixs not defined", procName, NULL);
+ d = pixGetDepth(pixs);
+ if (d != 8 && d != 16)
+ return (PIX *)ERROR_PTR("pixs not 8 or 16 bpp", procName, NULL);
+
+ if (d == 16) {
+ pixd = pixConvert16To8(pixs, L_MS_BYTE);
+ } else { /* d == 8 */
+ if (pixGetColormap(pixs))
+ pixd = pixRemoveColormap(pixs, REMOVE_CMAP_TO_GRAYSCALE);
+ else
+ pixd = pixCopy(NULL, pixs);
+ }
+ if (!pixd)
+ return (PIX *)ERROR_PTR("pixd not made", procName, NULL);
+
+ cmap = pixcmapGrayToFalseColor(gamma);
+ pixSetColormap(pixd, cmap);
+ pixCopyResolution(pixd, pixs);
+ pixCopyInputFormat(pixd, pixs);
+ return pixd;
+}
+
+
+/*---------------------------------------------------------------------------*
+ * Unpacking conversion from 1 bpp to 2, 4, 8, 16 and 32 bpp *
+ *---------------------------------------------------------------------------*/
+/*!
+ * \brief pixUnpackBinary()
+ *
+ * \param[in] pixs 1 bpp
+ * \param[in] depth of destination: 2, 4, 8, 16 or 32 bpp
+ * \param[in] invert 0: binary 0 --> grayscale 0
+ * binary 1 --> grayscale 0xff...
+ * 1: binary 0 --> grayscale 0xff...
+ * binary 1 --> grayscale 0
+ * \return pixd 2, 4, 8, 16 or 32 bpp, or NULL on error
+ *
+ * <pre>
+ * Notes:
+ * (1) This function calls special cases of pixConvert1To*(),
+ * for 2, 4, 8, 16 and 32 bpp destinations.
+ * </pre>
+ */
+PIX *
+pixUnpackBinary(PIX *pixs,
+ l_int32 depth,
+ l_int32 invert)
+{
+PIX *pixd;
+
+ PROCNAME("pixUnpackBinary");
+
+ if (!pixs)
+ return (PIX *)ERROR_PTR("pixs not defined", procName, NULL);
+ if (pixGetDepth(pixs) != 1)
+ return (PIX *)ERROR_PTR("pixs not 1 bpp", procName, NULL);
+ if (depth != 2 && depth != 4 && depth != 8 && depth != 16 && depth != 32)
+ return (PIX *)ERROR_PTR("depth not 2, 4, 8, 16 or 32 bpp",
+ procName, NULL);
+
+ if (depth == 2) {
+ if (invert == 0)
+ pixd = pixConvert1To2(NULL, pixs, 0, 3);
+ else /* invert bits */
+ pixd = pixConvert1To2(NULL, pixs, 3, 0);
+ } else if (depth == 4) {
+ if (invert == 0)
+ pixd = pixConvert1To4(NULL, pixs, 0, 15);
+ else /* invert bits */
+ pixd = pixConvert1To4(NULL, pixs, 15, 0);
+ } else if (depth == 8) {
+ if (invert == 0)
+ pixd = pixConvert1To8(NULL, pixs, 0, 255);
+ else /* invert bits */
+ pixd = pixConvert1To8(NULL, pixs, 255, 0);
+ } else if (depth == 16) {
+ if (invert == 0)
+ pixd = pixConvert1To16(NULL, pixs, 0, 0xffff);
+ else /* invert bits */
+ pixd = pixConvert1To16(NULL, pixs, 0xffff, 0);
+ } else {
+ if (invert == 0)
+ pixd = pixConvert1To32(NULL, pixs, 0, 0xffffffff);
+ else /* invert bits */
+ pixd = pixConvert1To32(NULL, pixs, 0xffffffff, 0);
+ }
+
+ pixCopyInputFormat(pixd, pixs);
+ return pixd;
+}
+
+
+/*!
+ * \brief pixConvert1To16()
+ *
+ * \param[in] pixd [optional] 16 bpp, can be null
+ * \param[in] pixs 1 bpp
+ * \param[in] val0 16 bit value to be used for 0s in pixs
+ * \param[in] val1 16 bit value to be used for 1s in pixs
+ * \return pixd 16 bpp
+ *
+ * <pre>
+ * Notes:
+ * (1) If pixd is null, a new pix is made.
+ * (2) If pixd is not null, it must be of equal width and height
+ * as pixs. It is always returned.
+ * </pre>
+ */
+PIX *
+pixConvert1To16(PIX *pixd,
+ PIX *pixs,
+ l_uint16 val0,
+ l_uint16 val1)
+{
+l_int32 w, h, i, j, dibit, ndibits, wpls, wpld;
+l_uint16 val[2];
+l_uint32 index;
+l_uint32 *tab, *datas, *datad, *lines, *lined;
+
+ PROCNAME("pixConvert1To16");
+
+ if (!pixs)
+ return (PIX *)ERROR_PTR("pixs not defined", procName, NULL);
+ if (pixGetDepth(pixs) != 1)
+ return (PIX *)ERROR_PTR("pixs not 1 bpp", procName, NULL);
+
+ pixGetDimensions(pixs, &w, &h, NULL);
+ if (pixd) {
+ if (w != pixGetWidth(pixd) || h != pixGetHeight(pixd))
+ return (PIX *)ERROR_PTR("pix sizes unequal", procName, pixd);
+ if (pixGetDepth(pixd) != 16)
+ return (PIX *)ERROR_PTR("pixd not 16 bpp", procName, pixd);
+ } else {
+ if ((pixd = pixCreate(w, h, 16)) == NULL)
+ return (PIX *)ERROR_PTR("pixd not made", procName, NULL);
+ }
+ pixCopyResolution(pixd, pixs);
+ pixCopyInputFormat(pixd, pixs);
+
+ /* Use a table to convert 2 src bits at a time */
+ tab = (l_uint32 *)LEPT_CALLOC(4, sizeof(l_uint32));
+ val[0] = val0;
+ val[1] = val1;
+ for (index = 0; index < 4; index++) {
+ tab[index] = (val[(index >> 1) & 1] << 16) | val[index & 1];
+ }
+
+ datas = pixGetData(pixs);
+ wpls = pixGetWpl(pixs);
+ datad = pixGetData(pixd);
+ wpld = pixGetWpl(pixd);
+ ndibits = (w + 1) / 2;
+ for (i = 0; i < h; i++) {
+ lines = datas + i * wpls;
+ lined = datad + i * wpld;
+ for (j = 0; j < ndibits; j++) {
+ dibit = GET_DATA_DIBIT(lines, j);
+ lined[j] = tab[dibit];
+ }
+ }
+
+ LEPT_FREE(tab);
+ return pixd;
+}
+
+
+/*!
+ * \brief pixConvert1To32()
+ *
+ * \param[in] pixd [optional] 32 bpp, can be null
+ * \param[in] pixs 1 bpp
+ * \param[in] val0 32 bit value to be used for 0s in pixs
+ * \param[in] val1 32 bit value to be used for 1s in pixs
+ * \return pixd 32 bpp
+ *
+ * <pre>
+ * Notes:
+ * (1) If pixd is null, a new pix is made.
+ * (2) If pixd is not null, it must be of equal width and height
+ * as pixs. It is always returned.
+ * </pre>
+ */
+PIX *
+pixConvert1To32(PIX *pixd,
+ PIX *pixs,
+ l_uint32 val0,
+ l_uint32 val1)
+{
+l_int32 w, h, i, j, wpls, wpld, bit;
+l_uint32 val[2];
+l_uint32 *datas, *datad, *lines, *lined;
+
+ PROCNAME("pixConvert1To32");
+
+ if (!pixs)
+ return (PIX *)ERROR_PTR("pixs not defined", procName, NULL);
+ if (pixGetDepth(pixs) != 1)
+ return (PIX *)ERROR_PTR("pixs not 1 bpp", procName, NULL);
+
+ pixGetDimensions(pixs, &w, &h, NULL);
+ if (pixd) {
+ if (w != pixGetWidth(pixd) || h != pixGetHeight(pixd))
+ return (PIX *)ERROR_PTR("pix sizes unequal", procName, pixd);
+ if (pixGetDepth(pixd) != 32)
+ return (PIX *)ERROR_PTR("pixd not 32 bpp", procName, pixd);
+ } else {
+ if ((pixd = pixCreate(w, h, 32)) == NULL)
+ return (PIX *)ERROR_PTR("pixd not made", procName, NULL);
+ }
+ pixCopyResolution(pixd, pixs);
+ pixCopyInputFormat(pixd, pixs);
+
+ val[0] = val0;
+ val[1] = val1;
+ datas = pixGetData(pixs);
+ wpls = pixGetWpl(pixs);
+ datad = pixGetData(pixd);
+ wpld = pixGetWpl(pixd);
+ for (i = 0; i < h; i++) {
+ lines = datas + i * wpls;
+ lined = datad + i * wpld;
+ for (j = 0; j <w; j++) {
+ bit = GET_DATA_BIT(lines, j);
+ lined[j] = val[bit];
+ }
+ }
+
+ return pixd;
+}
+
+
+/*---------------------------------------------------------------------------*
+ * Conversion from 1 bpp to 2 bpp *
+ *---------------------------------------------------------------------------*/
+/*!
+ * \brief pixConvert1To2Cmap()
+ *
+ * \param[in] pixs 1 bpp
+ * \return pixd 2 bpp, cmapped
+ *
+ * <pre>
+ * Notes:
+ * (1) Input 0 is mapped to (255, 255, 255); 1 is mapped to (0, 0, 0)
+ * </pre>
+ */
+PIX *
+pixConvert1To2Cmap(PIX *pixs)
+{
+PIX *pixd;
+PIXCMAP *cmap;
+
+ PROCNAME("pixConvert1To2Cmap");
+
+ if (!pixs)
+ return (PIX *)ERROR_PTR("pixs not defined", procName, NULL);
+ if (pixGetDepth(pixs) != 1)
+ return (PIX *)ERROR_PTR("pixs not 1 bpp", procName, NULL);
+
+ if ((pixd = pixConvert1To2(NULL, pixs, 0, 1)) == NULL)
+ return (PIX *)ERROR_PTR("pixd not made", procName, NULL);
+ cmap = pixcmapCreate(2);
+ pixcmapAddColor(cmap, 255, 255, 255);
+ pixcmapAddColor(cmap, 0, 0, 0);
+ pixSetColormap(pixd, cmap);
+ pixCopyInputFormat(pixd, pixs);
+
+ return pixd;
+}
+
+
+/*!
+ * \brief pixConvert1To2()
+ *
+ * \param[in] pixd [optional] 2 bpp, can be null
+ * \param[in] pixs 1 bpp
+ * \param[in] val0 2 bit value to be used for 0s in pixs
+ * \param[in] val1 2 bit value to be used for 1s in pixs
+ * \return pixd 2 bpp
+ *
+ * <pre>
+ * Notes:
+ * (1) If pixd is null, a new pix is made.
+ * (2) If pixd is not null, it must be of equal width and height
+ * as pixs. It is always returned.
+ * (3) A simple unpacking might use val0 = 0 and val1 = 3.
+ * (4) If you want a colormapped pixd, use pixConvert1To2Cmap().
+ * </pre>
+ */
+PIX *
+pixConvert1To2(PIX *pixd,
+ PIX *pixs,
+ l_int32 val0,
+ l_int32 val1)
+{
+l_int32 w, h, i, j, byteval, nbytes, wpls, wpld;
+l_uint8 val[2];
+l_uint32 index;
+l_uint16 *tab;
+l_uint32 *datas, *datad, *lines, *lined;
+
+ PROCNAME("pixConvert1To2");
+
+ if (!pixs)
+ return (PIX *)ERROR_PTR("pixs not defined", procName, pixd);
+ if (pixGetDepth(pixs) != 1)
+ return (PIX *)ERROR_PTR("pixs not 1 bpp", procName, pixd);
+
+ pixGetDimensions(pixs, &w, &h, NULL);
+ if (pixd) {
+ if (w != pixGetWidth(pixd) || h != pixGetHeight(pixd))
+ return (PIX *)ERROR_PTR("pix sizes unequal", procName, pixd);
+ if (pixGetDepth(pixd) != 2)
+ return (PIX *)ERROR_PTR("pixd not 2 bpp", procName, pixd);
+ } else {
+ if ((pixd = pixCreate(w, h, 2)) == NULL)
+ return (PIX *)ERROR_PTR("pixd not made", procName, NULL);
+ }
+ pixCopyResolution(pixd, pixs);
+ pixCopyInputFormat(pixd, pixs);
+
+ /* Use a table to convert 8 src bits to 16 dest bits */
+ tab = (l_uint16 *)LEPT_CALLOC(256, sizeof(l_uint16));
+ val[0] = val0;
+ val[1] = val1;
+ for (index = 0; index < 256; index++) {
+ tab[index] = (val[(index >> 7) & 1] << 14) |
+ (val[(index >> 6) & 1] << 12) |
+ (val[(index >> 5) & 1] << 10) |
+ (val[(index >> 4) & 1] << 8) |
+ (val[(index >> 3) & 1] << 6) |
+ (val[(index >> 2) & 1] << 4) |
+ (val[(index >> 1) & 1] << 2) | val[index & 1];
+ }
+
+ datas = pixGetData(pixs);
+ wpls = pixGetWpl(pixs);
+ datad = pixGetData(pixd);
+ wpld = pixGetWpl(pixd);
+ nbytes = (w + 7) / 8;
+ for (i = 0; i < h; i++) {
+ lines = datas + i * wpls;
+ lined = datad + i * wpld;
+ for (j = 0; j < nbytes; j++) {
+ byteval = GET_DATA_BYTE(lines, j);
+ SET_DATA_TWO_BYTES(lined, j, tab[byteval]);
+ }
+ }
+
+ LEPT_FREE(tab);
+ return pixd;
+}
+
+
+/*---------------------------------------------------------------------------*
+ * Conversion from 1 bpp to 4 bpp *
+ *---------------------------------------------------------------------------*/
+/*!
+ * \brief pixConvert1To4Cmap()
+ *
+ * \param[in] pixs 1 bpp
+ * \return pixd 4 bpp, cmapped
+ *
+ * <pre>
+ * Notes:
+ * (1) Input 0 is mapped to (255, 255, 255); 1 is mapped to (0, 0, 0)
+ * </pre>
+ */
+PIX *
+pixConvert1To4Cmap(PIX *pixs)
+{
+PIX *pixd;
+PIXCMAP *cmap;
+
+ PROCNAME("pixConvert1To4Cmap");
+
+ if (!pixs)
+ return (PIX *)ERROR_PTR("pixs not defined", procName, NULL);
+ if (pixGetDepth(pixs) != 1)
+ return (PIX *)ERROR_PTR("pixs not 1 bpp", procName, NULL);
+
+ if ((pixd = pixConvert1To4(NULL, pixs, 0, 1)) == NULL)
+ return (PIX *)ERROR_PTR("pixd not made", procName, NULL);
+ cmap = pixcmapCreate(4);
+ pixcmapAddColor(cmap, 255, 255, 255);
+ pixcmapAddColor(cmap, 0, 0, 0);
+ pixSetColormap(pixd, cmap);
+ pixCopyInputFormat(pixd, pixs);
+
+ return pixd;
+}
+
+
+/*!
+ * \brief pixConvert1To4()
+ *
+ * \param[in] pixd [optional] 4 bpp, can be null
+ * \param[in] pixs 1 bpp
+ * \param[in] val0 4 bit value to be used for 0s in pixs
+ * \param[in] val1 4 bit value to be used for 1s in pixs
+ * \return pixd 4 bpp
+ *
+ * <pre>
+ * Notes:
+ * (1) If pixd is null, a new pix is made.
+ * (2) If pixd is not null, it must be of equal width and height
+ * as pixs. It is always returned.
+ * (3) A simple unpacking might use val0 = 0 and val1 = 15, or v.v.
+ * (4) If you want a colormapped pixd, use pixConvert1To4Cmap().
+ * </pre>
+ */
+PIX *
+pixConvert1To4(PIX *pixd,
+ PIX *pixs,
+ l_int32 val0,
+ l_int32 val1)
+{
+l_int32 w, h, i, j, byteval, nbytes, wpls, wpld;
+l_uint8 val[2];
+l_uint32 index;
+l_uint32 *tab, *datas, *datad, *lines, *lined;
+
+ PROCNAME("pixConvert1To4");
+
+ if (!pixs)
+ return (PIX *)ERROR_PTR("pixs not defined", procName, pixd);
+ if (pixGetDepth(pixs) != 1)
+ return (PIX *)ERROR_PTR("pixs not 1 bpp", procName, pixd);
+
+ pixGetDimensions(pixs, &w, &h, NULL);
+ if (pixd) {
+ if (w != pixGetWidth(pixd) || h != pixGetHeight(pixd))
+ return (PIX *)ERROR_PTR("pix sizes unequal", procName, pixd);
+ if (pixGetDepth(pixd) != 4)
+ return (PIX *)ERROR_PTR("pixd not 4 bpp", procName, pixd);
+ } else {
+ if ((pixd = pixCreate(w, h, 4)) == NULL)
+ return (PIX *)ERROR_PTR("pixd not made", procName, NULL);
+ }
+ pixCopyResolution(pixd, pixs);
+ pixCopyInputFormat(pixd, pixs);
+
+ /* Use a table to convert 8 src bits to 32 bit dest word */
+ tab = (l_uint32 *)LEPT_CALLOC(256, sizeof(l_uint32));
+ val[0] = val0;
+ val[1] = val1;
+ for (index = 0; index < 256; index++) {
+ tab[index] = (val[(index >> 7) & 1] << 28) |
+ (val[(index >> 6) & 1] << 24) |
+ (val[(index >> 5) & 1] << 20) |
+ (val[(index >> 4) & 1] << 16) |
+ (val[(index >> 3) & 1] << 12) |
+ (val[(index >> 2) & 1] << 8) |
+ (val[(index >> 1) & 1] << 4) | val[index & 1];
+ }
+
+ datas = pixGetData(pixs);
+ wpls = pixGetWpl(pixs);
+ datad = pixGetData(pixd);
+ wpld = pixGetWpl(pixd);
+ nbytes = (w + 7) / 8;
+ for (i = 0; i < h; i++) {
+ lines = datas + i * wpls;
+ lined = datad + i * wpld;
+ for (j = 0; j < nbytes; j++) {
+ byteval = GET_DATA_BYTE(lines, j);
+ lined[j] = tab[byteval];
+ }
+ }
+
+ LEPT_FREE(tab);
+ return pixd;
+}
+
+
+/*---------------------------------------------------------------------------*
+ * Conversion from 1, 2 and 4 bpp to 8 bpp *
+ *---------------------------------------------------------------------------*/
+/*!
+ * \brief pixConvert1To8Cmap()
+ *
+ * \param[in] pixs 1 bpp
+ * \return pixd 8 bpp, cmapped
+ *
+ * <pre>
+ * Notes:
+ * (1) Input 0 is mapped to (255, 255, 255); 1 is mapped to (0, 0, 0)
+ * </pre>
+ */
+PIX *
+pixConvert1To8Cmap(PIX *pixs)
+{
+PIX *pixd;
+PIXCMAP *cmap;
+
+ PROCNAME("pixConvert1To8Cmap");
+
+ if (!pixs)
+ return (PIX *)ERROR_PTR("pixs not defined", procName, NULL);
+ if (pixGetDepth(pixs) != 1)
+ return (PIX *)ERROR_PTR("pixs not 1 bpp", procName, NULL);
+
+ if ((pixd = pixConvert1To8(NULL, pixs, 0, 1)) == NULL)
+ return (PIX *)ERROR_PTR("pixd not made", procName, NULL);
+ cmap = pixcmapCreate(8);
+ pixcmapAddColor(cmap, 255, 255, 255);
+ pixcmapAddColor(cmap, 0, 0, 0);
+ pixSetColormap(pixd, cmap);
+ pixCopyInputFormat(pixd, pixs);
+ return pixd;
+}
+
+
+/*!
+ * \brief pixConvert1To8()
+ *
+ * \param[in] pixd [optional] 8 bpp, can be null
+ * \param[in] pixs 1 bpp
+ * \param[in] val0 8 bit value to be used for 0s in pixs
+ * \param[in] val1 8 bit value to be used for 1s in pixs
+ * \return pixd 8 bpp
+ *
+ * <pre>
+ * Notes:
+ * (1) If pixd is null, a new pix is made.
+ * (2) If pixd is not null, it must be of equal width and height
+ * as pixs. It is always returned.
+ * (3) A simple unpacking might use val0 = 0 and val1 = 255, or v.v.
+ * (4) To have a colormap associated with the 8 bpp pixd,
+ * use pixConvert1To8Cmap().
+ * </pre>
+ */
+PIX *
+pixConvert1To8(PIX *pixd,
+ PIX *pixs,
+ l_uint8 val0,
+ l_uint8 val1)
+{
+l_int32 w, h, i, j, qbit, nqbits, wpls, wpld;
+l_uint8 val[2];
+l_uint32 index;
+l_uint32 *tab, *datas, *datad, *lines, *lined;
+
+ PROCNAME("pixConvert1To8");
+
+ if (!pixs)
+ return (PIX *)ERROR_PTR("pixs not defined", procName, pixd);
+ if (pixGetDepth(pixs) != 1)
+ return (PIX *)ERROR_PTR("pixs not 1 bpp", procName, pixd);
+
+ pixGetDimensions(pixs, &w, &h, NULL);
+ if (pixd) {
+ if (w != pixGetWidth(pixd) || h != pixGetHeight(pixd))
+ return (PIX *)ERROR_PTR("pix sizes unequal", procName, pixd);
+ if (pixGetDepth(pixd) != 8)
+ return (PIX *)ERROR_PTR("pixd not 8 bpp", procName, pixd);
+ } else {
+ if ((pixd = pixCreate(w, h, 8)) == NULL)
+ return (PIX *)ERROR_PTR("pixd not made", procName, NULL);
+ }
+ pixCopyResolution(pixd, pixs);
+ pixCopyInputFormat(pixd, pixs);
+ pixSetPadBits(pixs, 0);
+
+ /* Use a table to convert 4 src bits at a time */
+ tab = (l_uint32 *)LEPT_CALLOC(16, sizeof(l_uint32));
+ val[0] = val0;
+ val[1] = val1;
+ for (index = 0; index < 16; index++) {
+ tab[index] = ((l_uint32)val[(index >> 3) & 1] << 24) |
+ (val[(index >> 2) & 1] << 16) |
+ (val[(index >> 1) & 1] << 8) | val[index & 1];
+ }
+
+ datas = pixGetData(pixs);
+ wpls = pixGetWpl(pixs);
+ datad = pixGetData(pixd);
+ wpld = pixGetWpl(pixd);
+ nqbits = (w + 3) / 4;
+ for (i = 0; i < h; i++) {
+ lines = datas + i * wpls;
+ lined = datad + i * wpld;
+ for (j = 0; j < nqbits; j++) {
+ qbit = GET_DATA_QBIT(lines, j);
+ lined[j] = tab[qbit];
+ }
+ }
+
+ LEPT_FREE(tab);
+ return pixd;
+}
+
+
+/*!
+ * \brief pixConvert2To8()
+ *
+ * \param[in] pixs 2 bpp
+ * \param[in] val0 8 bit value to be used for 00 in pixs
+ * \param[in] val1 8 bit value to be used for 01 in pixs
+ * \param[in] val2 8 bit value to be used for 10 in pixs
+ * \param[in] val3 8 bit value to be used for 11 in pixs
+ * \param[in] cmapflag TRUE if pixd is to have a colormap; FALSE otherwise
+ * \return pixd 8 bpp, or NULL on error
+ *
+ * <pre>
+ * Notes:
+ * ~ A simple unpacking might use val0 = 0,
+ * val1 = 85 (0x55), val2 = 170 (0xaa), val3 = 255.
+ * ~ If cmapflag is TRUE:
+ * ~ The 8 bpp image is made with a colormap.
+ * ~ If pixs has a colormap, the input values are ignored and
+ * the 8 bpp image is made using the colormap
+ * ~ If pixs does not have a colormap, the input values are
+ * used to build the colormap.
+ * ~ If cmapflag is FALSE:
+ * ~ The 8 bpp image is made without a colormap.
+ * ~ If pixs has a colormap, the input values are ignored,
+ * the colormap is removed, and the values stored in the 8 bpp
+ * image are from the colormap.
+ * ~ If pixs does not have a colormap, the input values are
+ * used to populate the 8 bpp image.
+ * </pre>
+ */
+PIX *
+pixConvert2To8(PIX *pixs,
+ l_uint8 val0,
+ l_uint8 val1,
+ l_uint8 val2,
+ l_uint8 val3,
+ l_int32 cmapflag)
+{
+l_int32 w, h, i, j, nbytes, wpls, wpld, dibit, byte;
+l_uint32 val[4];
+l_uint32 index;
+l_uint32 *tab, *datas, *datad, *lines, *lined;
+PIX *pixd;
+PIXCMAP *cmaps, *cmapd;
+
+ PROCNAME("pixConvert2To8");
+
+ if (!pixs)
+ return (PIX *)ERROR_PTR("pixs not defined", procName, NULL);
+ if (pixGetDepth(pixs) != 2)
+ return (PIX *)ERROR_PTR("pixs not 2 bpp", procName, NULL);
+
+ cmaps = pixGetColormap(pixs);
+ if (cmaps && cmapflag == FALSE)
+ return pixRemoveColormap(pixs, REMOVE_CMAP_TO_GRAYSCALE);
+
+ pixGetDimensions(pixs, &w, &h, NULL);
+ if ((pixd = pixCreate(w, h, 8)) == NULL)
+ return (PIX *)ERROR_PTR("pixd not made", procName, NULL);
+ pixSetPadBits(pixs, 0);
+ pixCopyResolution(pixd, pixs);
+ pixCopyInputFormat(pixd, pixs);
+ datas = pixGetData(pixs);
+ wpls = pixGetWpl(pixs);
+ datad = pixGetData(pixd);
+ wpld = pixGetWpl(pixd);
+
+ if (cmapflag == TRUE) { /* pixd will have a colormap */
+ if (cmaps) { /* use the existing colormap from pixs */
+ cmapd = pixcmapConvertTo8(cmaps);
+ } else { /* make a colormap from the input values */
+ cmapd = pixcmapCreate(8);
+ pixcmapAddColor(cmapd, val0, val0, val0);
+ pixcmapAddColor(cmapd, val1, val1, val1);
+ pixcmapAddColor(cmapd, val2, val2, val2);
+ pixcmapAddColor(cmapd, val3, val3, val3);
+ }
+ pixSetColormap(pixd, cmapd);
+ for (i = 0; i < h; i++) {
+ lines = datas + i * wpls;
+ lined = datad + i * wpld;
+ for (j = 0; j < w; j++) {
+ dibit = GET_DATA_DIBIT(lines, j);
+ SET_DATA_BYTE(lined, j, dibit);
+ }
+ }
+ return pixd;
+ }
+
+ /* Last case: no colormap in either pixs or pixd.
+ * Use input values and build a table to convert 1 src byte
+ * (4 src pixels) at a time */
+ tab = (l_uint32 *)LEPT_CALLOC(256, sizeof(l_uint32));
+ val[0] = val0;
+ val[1] = val1;
+ val[2] = val2;
+ val[3] = val3;
+ for (index = 0; index < 256; index++) {
+ tab[index] = (val[(index >> 6) & 3] << 24) |
+ (val[(index >> 4) & 3] << 16) |
+ (val[(index >> 2) & 3] << 8) | val[index & 3];
+ }
+
+ nbytes = (w + 3) / 4;
+ for (i = 0; i < h; i++) {
+ lines = datas + i * wpls;
+ lined = datad + i * wpld;
+ for (j = 0; j < nbytes; j++) {
+ byte = GET_DATA_BYTE(lines, j);
+ lined[j] = tab[byte];
+ }
+ }
+
+ LEPT_FREE(tab);
+ return pixd;
+}
+
+
+/*!
+ * \brief pixConvert4To8()
+ *
+ * \param[in] pixs 4 bpp
+ * \param[in] cmapflag TRUE if pixd is to have a colormap; FALSE otherwise
+ * \return pixd 8 bpp, or NULL on error
+ *
+ * <pre>
+ * Notes:
+ * ~ If cmapflag is TRUE:
+ * ~ pixd is made with a colormap.
+ * ~ If pixs has a colormap, it is copied and the colormap
+ * index values are placed in pixd.
+ * ~ If pixs does not have a colormap, a colormap with linear
+ * trc is built and the pixel values in pixs are placed in
+ * pixd as colormap index values.
+ * ~ If cmapflag is FALSE:
+ * ~ pixd is made without a colormap.
+ * ~ If pixs has a colormap, it is removed and the values stored
+ * in pixd are from the colormap (converted to gray).
+ * ~ If pixs does not have a colormap, the pixel values in pixs
+ * are used, with shift replication, to populate pixd.
+ * </pre>
+ */
+PIX *
+pixConvert4To8(PIX *pixs,
+ l_int32 cmapflag)
+{
+l_int32 w, h, i, j, wpls, wpld, byte, qbit;
+l_uint32 *datas, *datad, *lines, *lined;
+PIX *pixd;
+PIXCMAP *cmaps, *cmapd;
+
+ PROCNAME("pixConvert4To8");
+
+ if (!pixs)
+ return (PIX *)ERROR_PTR("pixs not defined", procName, NULL);
+ if (pixGetDepth(pixs) != 4)
+ return (PIX *)ERROR_PTR("pixs not 4 bpp", procName, NULL);
+
+ cmaps = pixGetColormap(pixs);
+ if (cmaps && cmapflag == FALSE)
+ return pixRemoveColormap(pixs, REMOVE_CMAP_TO_GRAYSCALE);
+
+ pixGetDimensions(pixs, &w, &h, NULL);
+ if ((pixd = pixCreate(w, h, 8)) == NULL)
+ return (PIX *)ERROR_PTR("pixd not made", procName, NULL);
+ pixCopyResolution(pixd, pixs);
+ pixCopyInputFormat(pixd, pixs);
+ datas = pixGetData(pixs);
+ wpls = pixGetWpl(pixs);
+ datad = pixGetData(pixd);
+ wpld = pixGetWpl(pixd);
+
+ if (cmapflag == TRUE) { /* pixd will have a colormap */
+ if (cmaps) { /* use the existing colormap from pixs */
+ cmapd = pixcmapConvertTo8(cmaps);
+ } else { /* make a colormap with a linear trc */
+ cmapd = pixcmapCreate(8);
+ for (i = 0; i < 16; i++)
+ pixcmapAddColor(cmapd, 17 * i, 17 * i, 17 * i);
+ }
+ pixSetColormap(pixd, cmapd);
+ for (i = 0; i < h; i++) {
+ lines = datas + i * wpls;
+ lined = datad + i * wpld;
+ for (j = 0; j < w; j++) {
+ qbit = GET_DATA_QBIT(lines, j);
+ SET_DATA_BYTE(lined, j, qbit);
+ }
+ }
+ return pixd;
+ }
+
+ /* Last case: no colormap in either pixs or pixd.
+ * Replicate the qbit value into 8 bits. */
+ for (i = 0; i < h; i++) {
+ lines = datas + i * wpls;
+ lined = datad + i * wpld;
+ for (j = 0; j < w; j++) {
+ qbit = GET_DATA_QBIT(lines, j);
+ byte = (qbit << 4) | qbit;
+ SET_DATA_BYTE(lined, j, byte);
+ }
+ }
+ return pixd;
+}
+
+
+
+/*---------------------------------------------------------------------------*
+ * Unpacking conversion from 8 bpp to 16 bpp *
+ *---------------------------------------------------------------------------*/
+/*!
+ * \brief pixConvert8To16()
+ *
+ * \param[in] pixs 8 bpp; colormap removed to gray
+ * \param[in] leftshift number of bits: 0 is no shift;
+ * 8 replicates in MSB and LSB of dest
+ * \return pixd 16 bpp, or NULL on error
+ *
+ * <pre>
+ * Notes:
+ * (1) For left shift of 8, the 8 bit value is replicated in both
+ * the MSB and the LSB of the pixels in pixd. That way, we get
+ * proportional mapping, with a correct map from 8 bpp white
+ * (0xff) to 16 bpp white (0xffff).
+ * </pre>
+ */
+PIX *
+pixConvert8To16(PIX *pixs,
+ l_int32 leftshift)
+{
+l_int32 i, j, w, h, d, wplt, wpld, val;
+l_uint32 *datat, *datad, *linet, *lined;
+PIX *pixt, *pixd;
+
+ PROCNAME("pixConvert8To16");
+
+ if (!pixs)
+ return (PIX *)ERROR_PTR("pixs not defined", procName, NULL);
+ pixGetDimensions(pixs, &w, &h, &d);
+ if (d != 8)
+ return (PIX *)ERROR_PTR("pixs not 8 bpp", procName, NULL);
+ if (leftshift < 0 || leftshift > 8)
+ return (PIX *)ERROR_PTR("leftshift not in [0 ... 8]", procName, NULL);
+
+ if (pixGetColormap(pixs) != NULL)
+ pixt = pixRemoveColormap(pixs, REMOVE_CMAP_TO_GRAYSCALE);
+ else
+ pixt = pixClone(pixs);
+
+ pixd = pixCreate(w, h, 16);
+ pixCopyResolution(pixd, pixs);
+ pixCopyInputFormat(pixd, pixs);
+ datat = pixGetData(pixt);
+ datad = pixGetData(pixd);
+ wplt = pixGetWpl(pixt);
+ wpld = pixGetWpl(pixd);
+ for (i = 0; i < h; i++) {
+ linet = datat + i * wplt;
+ lined = datad + i * wpld;
+ for (j = 0; j < w; j++) {
+ val = GET_DATA_BYTE(linet, j);
+ if (leftshift == 8)
+ val = val | (val << leftshift);
+ else
+ val <<= leftshift;
+ SET_DATA_TWO_BYTES(lined, j, val);
+ }
+ }
+
+ pixDestroy(&pixt);
+ return pixd;
+}
+
+
+/*---------------------------------------------------------------------------*
+ * Top-level conversion to 2 bpp *
+ *---------------------------------------------------------------------------*/
+/*!
+ * \brief pixConvertTo2()
+ *
+ * \param[in] pixs 1, 2, 4, 8, 24, 32 bpp; colormap OK but will be removed
+ * \return pixd 2 bpp, or NULL on error
+ *
+ * <pre>
+ * Notes:
+ * (1) This is a top-level function, with simple default values
+ * used in pixConvertTo8() if unpacking is necessary.
+ * (2) Any existing colormap is removed; the result is always gray.
+ * (3) If the input image has 2 bpp and no colormap, the operation is
+ * lossless and a copy is returned.
+ * </pre>
+ */
+PIX *
+pixConvertTo2(PIX *pixs)
+{
+l_int32 d;
+PIX *pix1, *pix2, *pix3, *pixd;
+
+ PROCNAME("pixConvertTo2");
+
+ if (!pixs)
+ return (PIX *)ERROR_PTR("pixs not defined", procName, NULL);
+ d = pixGetDepth(pixs);
+ if (d != 1 && d != 2 && d != 4 && d != 8 && d != 24 && d != 32)
+ return (PIX *)ERROR_PTR("depth not {1,2,4,8,24,32}", procName, NULL);
+
+ if (pixGetColormap(pixs) != NULL) {
+ pix1 = pixRemoveColormap(pixs, REMOVE_CMAP_TO_GRAYSCALE);
+ d = pixGetDepth(pix1);
+ } else {
+ pix1 = pixCopy(NULL, pixs);
+ }
+ if (d == 24 || d == 32)
+ pix2 = pixConvertTo8(pix1, FALSE);
+ else
+ pix2 = pixClone(pix1);
+ pixDestroy(&pix1);
+ if (d == 1) {
+ pixd = pixConvert1To2(NULL, pix2, 3, 0);
+ } else if (d == 2) {
+ pixd = pixClone(pix2);
+ } else if (d == 4) {
+ pix3 = pixConvert4To8(pix2, FALSE); /* unpack to 8 */
+ pixd = pixConvert8To2(pix3);
+ pixDestroy(&pix3);
+ } else { /* d == 8 */
+ pixd = pixConvert8To2(pix2);
+ }
+ pixDestroy(&pix2);
+ return pixd;
+}
+
+
+/*!
+ * \brief pixConvert8To2()
+ *
+ * \param[in] pix 8 bpp; colormap OK
+ * \return pixd 2 bpp, or NULL on error
+ *
+ * <pre>
+ * Notes:
+ * (1) Any existing colormap is removed to gray.
+ * </pre>
+ */
+PIX *
+pixConvert8To2(PIX *pix)
+{
+l_int32 i, j, w, h, wpls, wpld;
+l_uint32 word;
+l_uint32 *datas, *lines, *datad, *lined;
+PIX *pixs, *pixd;
+
+ PROCNAME("pixConvert8To2");
+
+ if (!pix || pixGetDepth(pix) != 8)
+ return (PIX *)ERROR_PTR("pix undefined or not 8 bpp", procName, NULL);
+
+ if (pixGetColormap(pix) != NULL)
+ pixs = pixRemoveColormap(pix, REMOVE_CMAP_TO_GRAYSCALE);
+ else
+ pixs = pixClone(pix);
+ pixGetDimensions(pixs, &w, &h, NULL);
+ datas = pixGetData(pixs);
+ wpls = pixGetWpl(pixs);
+ pixd = pixCreate(w, h, 2);
+ datad = pixGetData(pixd);
+ wpld = pixGetWpl(pixd);
+ for (i = 0; i < h; i++) {
+ lines = datas + i * wpls;
+ lined = datad + i * wpld;
+ for (j = 0; j < wpls; j++) { /* march through 4 pixels at a time */
+ word = lines[j] & 0xc0c0c0c0; /* top 2 bits of each byte */
+ word = (word >> 24) | ((word & 0xff0000) >> 18) |
+ ((word & 0xff00) >> 12) | ((word & 0xff) >> 6);
+ SET_DATA_BYTE(lined, j, word); /* only LS byte is filled */
+ }
+ }
+ pixDestroy(&pixs);
+ return pixd;
+}
+
+
+/*---------------------------------------------------------------------------*
+ * Top-level conversion to 4 bpp *
+ *---------------------------------------------------------------------------*/
+/*!
+ * \brief pixConvertTo4()
+ *
+ * \param[in] pixs 1, 2, 4, 8, 24, 32 bpp; colormap OK but will be removed
+ * \return pixd 4 bpp, or NULL on error
+ *
+ * <pre>
+ * Notes:
+ * (1) This is a top-level function, with simple default values
+ * used in pixConvertTo8() if unpacking is necessary.
+ * (2) Any existing colormap is removed; the result is always gray.
+ * (3) If the input image has 4 bpp and no colormap, the operation is
+ * lossless and a copy is returned.
+ * </pre>
+ */
+PIX *
+pixConvertTo4(PIX *pixs)
+{
+l_int32 d;
+PIX *pix1, *pix2, *pix3, *pixd;
+
+ PROCNAME("pixConvertTo4");
+
+ if (!pixs)
+ return (PIX *)ERROR_PTR("pixs not defined", procName, NULL);
+ d = pixGetDepth(pixs);
+ if (d != 1 && d != 2 && d != 4 && d != 8 && d != 24 && d != 32)
+ return (PIX *)ERROR_PTR("depth not {1,2,4,8,24,32}", procName, NULL);
+
+ if (pixGetColormap(pixs) != NULL) {
+ pix1 = pixRemoveColormap(pixs, REMOVE_CMAP_TO_GRAYSCALE);
+ d = pixGetDepth(pix1);
+ } else {
+ pix1 = pixCopy(NULL, pixs);
+ }
+ if (d == 24 || d == 32)
+ pix2 = pixConvertTo8(pix1, FALSE);
+ else
+ pix2 = pixClone(pix1);
+ pixDestroy(&pix1);
+ if (d == 1) {
+ pixd = pixConvert1To4(NULL, pix2, 15, 0);
+ } else if (d == 2) {
+ pix3 = pixConvert2To8(pix2, 0, 0x55, 0xaa, 0xff, FALSE);
+ pixd = pixConvert8To4(pix3);
+ pixDestroy(&pix3);
+ } else if (d == 4) {
+ pixd = pixClone(pix2);
+ } else { /* d == 8 */
+ pixd = pixConvert8To4(pix2);
+ }
+ pixDestroy(&pix2);
+ return pixd;
+}
+
+
+/*!
+ * \brief pixConvert8To4()
+ *
+ * \param[in] pix 8 bpp; colormap OK
+ * \return pixd 4 bpp, or NULL on error
+ *
+ * <pre>
+ * Notes:
+ * (1) Any existing colormap is removed to gray.
+ * </pre>
+ */
+PIX *
+pixConvert8To4(PIX *pix)
+{
+l_int32 i, j, w, h, wpls, wpld, val;
+l_uint32 *datas, *lines, *datad, *lined;
+PIX *pixs, *pixd;
+
+ PROCNAME("pixConvert8To4");
+
+ if (!pix || pixGetDepth(pix) != 8)
+ return (PIX *)ERROR_PTR("pix undefined or not 8 bpp", procName, NULL);
+
+ if (pixGetColormap(pix) != NULL)
+ pixs = pixRemoveColormap(pix, REMOVE_CMAP_TO_GRAYSCALE);
+ else
+ pixs = pixClone(pix);
+ pixGetDimensions(pixs, &w, &h, NULL);
+ datas = pixGetData(pixs);
+ wpls = pixGetWpl(pixs);
+ pixd = pixCreate(w, h, 4);
+ datad = pixGetData(pixd);
+ wpld = pixGetWpl(pixd);
+ for (i = 0; i < h; i++) {
+ lines = datas + i * wpls;
+ lined = datad + i * wpld;
+ for (j = 0; j < w; j++) {
+ val = GET_DATA_BYTE(lines, j);
+ val = val >> 4; /* take top 4 bits */
+ SET_DATA_QBIT(lined, j, val);
+ }
+ }
+ pixDestroy(&pixs);
+ return pixd;
+}
+
+
+/*---------------------------------------------------------------------------*
+ * Top-level conversion to 1 bpp *
+ *---------------------------------------------------------------------------*/
+/*!
+ * \brief pixConvertTo1Adaptive()
+ *
+ * \param[in] pixs 1, 2, 4, 8, 16, 24 or 32 bpp
+ * \return pixd 1 bpp, or NULL on error
+ *
+ * <pre>
+ * Notes:
+ * (1) This is a top-level function, that uses default values for
+ * adaptive thresholding, if necessary. Otherwise, it is the same as
+ * pixConvertTo1(), which uses a global threshold for binarization.
+ * </pre>
+ */
+PIX *
+pixConvertTo1Adaptive(PIX *pixs)
+{
+l_int32 d, color0, color1, rval, gval, bval;
+PIX *pix1, *pix2, *pixd;
+PIXCMAP *cmap;
+
+ PROCNAME("pixConvertTo1Adaptive");
+
+ if (!pixs)
+ return (PIX *)ERROR_PTR("pixs not defined", procName, NULL);
+ d = pixGetDepth(pixs);
+ if (d != 1 && d != 2 && d != 4 && d != 8 && d != 16 && d != 24 && d != 32)
+ return (PIX *)ERROR_PTR("depth not {1,2,4,8,16,24,32}", procName, NULL);
+
+ cmap = pixGetColormap(pixs);
+ if (d == 1) {
+ if (!cmap) {
+ return pixCopy(NULL, pixs);
+ } else { /* strip the colormap off, and invert if reasonable
+ for standard binary photometry. */
+ pixcmapGetColor(cmap, 0, &rval, &gval, &bval);
+ color0 = rval + gval + bval;
+ pixcmapGetColor(cmap, 1, &rval, &gval, &bval);
+ color1 = rval + gval + bval;
+ pixd = pixCopy(NULL, pixs);
+ pixDestroyColormap(pixd);
+ if (color1 > color0)
+ pixInvert(pixd, pixd);
+ return pixd;
+ }
+ }
+
+ /* For all other depths, use 8 bpp as an intermediary */
+ pix1 = pixConvertTo8(pixs, FALSE);
+ pix2 = pixBackgroundNormSimple(pix1, NULL, NULL);
+ pixd = pixThresholdToBinary(pix2, 180);
+ pixDestroy(&pix1);
+ pixDestroy(&pix2);
+ return pixd;
+}
+
+
+/*!
+ * \brief pixConvertTo1()
+ *
+ * \param[in] pixs 1, 2, 4, 8, 16, 24 or 32 bpp
+ * \param[in] threshold for final binarization, relative to 8 bpp
+ * \return pixd 1 bpp, or NULL on error
+ *
+ * <pre>
+ * Notes:
+ * (1) This is a top-level function, with simple default values
+ * used in pixConvertTo8() if unpacking is necessary.
+ * (2) Any existing colormap is removed.
+ * (3) If the input image has 1 bpp and no colormap, the operation is
+ * lossless and a copy is returned.
+ * </pre>
+ */
+PIX *
+pixConvertTo1(PIX *pixs,
+ l_int32 threshold)
+{
+l_int32 d, color0, color1, rval, gval, bval;
+PIX *pixg, *pixd;
+PIXCMAP *cmap;
+
+ PROCNAME("pixConvertTo1");
+
+ if (!pixs)
+ return (PIX *)ERROR_PTR("pixs not defined", procName, NULL);
+ d = pixGetDepth(pixs);
+ if (d != 1 && d != 2 && d != 4 && d != 8 && d != 16 && d != 24 && d != 32)
+ return (PIX *)ERROR_PTR("depth not {1,2,4,8,16,24,32}", procName, NULL);
+
+ cmap = pixGetColormap(pixs);
+ if (d == 1) {
+ if (!cmap) {
+ return pixCopy(NULL, pixs);
+ } else { /* strip the colormap off, and invert if reasonable
+ for standard binary photometry. */
+ pixcmapGetColor(cmap, 0, &rval, &gval, &bval);
+ color0 = rval + gval + bval;
+ pixcmapGetColor(cmap, 1, &rval, &gval, &bval);
+ color1 = rval + gval + bval;
+ pixd = pixCopy(NULL, pixs);
+ pixDestroyColormap(pixd);
+ if (color1 > color0)
+ pixInvert(pixd, pixd);
+ return pixd;
+ }
+ }
+
+ /* For all other depths, use 8 bpp as an intermediary */
+ pixg = pixConvertTo8(pixs, FALSE);
+ pixd = pixThresholdToBinary(pixg, threshold);
+ pixDestroy(&pixg);
+ return pixd;
+}
+
+
+/*!
+ * \brief pixConvertTo1BySampling()
+ *
+ * \param[in] pixs 1, 2, 4, 8, 16, 24 or 32 bpp
+ * \param[in] factor subsampling factor; integer >= 1
+ * \param[in] threshold for final binarization, relative to 8 bpp
+ * \return pixd 1 bpp, or NULL on error
+ *
+ * <pre>
+ * Notes:
+ * (1) This is a quick and dirty, top-level converter.
+ * (2) See pixConvertTo1() for default values.
+ * </pre>
+ */
+PIX *
+pixConvertTo1BySampling(PIX *pixs,
+ l_int32 factor,
+ l_int32 threshold)
+{
+l_float32 scalefactor;
+PIX *pixt, *pixd;
+
+ PROCNAME("pixConvertTo1BySampling");
+
+ if (!pixs)
+ return (PIX *)ERROR_PTR("pixs not defined", procName, NULL);
+ if (factor < 1)
+ return (PIX *)ERROR_PTR("factor must be >= 1", procName, NULL);
+
+ scalefactor = 1. / (l_float32)factor;
+ pixt = pixScaleBySampling(pixs, scalefactor, scalefactor);
+ pixd = pixConvertTo1(pixt, threshold);
+ pixDestroy(&pixt);
+ return pixd;
+}
+
+
+/*---------------------------------------------------------------------------*
+ * Top-level conversion to 8 bpp *
+ *---------------------------------------------------------------------------*/
+/*!
+ * \brief pixConvertTo8()
+ *
+ * \param[in] pixs 1, 2, 4, 8, 16, 24 or 32 bpp
+ * \param[in] cmapflag TRUE if pixd is to have a colormap; FALSE otherwise
+ * \return pixd 8 bpp, or NULL on error
+ *
+ * <pre>
+ * Notes:
+ * (1) This is a top-level function, with simple default values
+ * for unpacking.
+ * (2) The result, pixd, is made with a colormap if specified.
+ * It is always a new image -- never a clone. For example,
+ * if d == 8, and cmapflag matches the existence of a cmap
+ * in pixs, the operation is lossless and it returns a copy.
+ * (3) The default values used are:
+ * ~ 1 bpp: val0 = 255, val1 = 0
+ * ~ 2 bpp: 4 bpp: even increments over dynamic range
+ * ~ 8 bpp: lossless if cmap matches cmapflag
+ * ~ 16 bpp: use most significant byte
+ * (4) If 24 bpp or 32 bpp RGB, this is converted to gray.
+ * For color quantization, you must specify the type explicitly,
+ * using the color quantization code.
+ * </pre>
+ */
+PIX *
+pixConvertTo8(PIX *pixs,
+ l_int32 cmapflag)
+{
+l_int32 d;
+PIX *pix1, *pixd;
+PIXCMAP *cmap;
+
+ PROCNAME("pixConvertTo8");
+
+ if (!pixs)
+ return (PIX *)ERROR_PTR("pixs not defined", procName, NULL);
+ d = pixGetDepth(pixs);
+ if (d != 1 && d != 2 && d != 4 && d != 8 && d != 16 && d != 24 && d != 32)
+ return (PIX *)ERROR_PTR("depth not {1,2,4,8,16,24,32}", procName, NULL);
+
+ if (d == 1) {
+ if (cmapflag)
+ return pixConvert1To8Cmap(pixs);
+ else
+ return pixConvert1To8(NULL, pixs, 255, 0);
+ } else if (d == 2) {
+ return pixConvert2To8(pixs, 0, 85, 170, 255, cmapflag);
+ } else if (d == 4) {
+ return pixConvert4To8(pixs, cmapflag);
+ } else if (d == 8) {
+ cmap = pixGetColormap(pixs);
+ if ((cmap && cmapflag) || (!cmap && !cmapflag)) {
+ return pixCopy(NULL, pixs);
+ } else if (cmap) { /* !cmapflag */
+ return pixRemoveColormap(pixs, REMOVE_CMAP_TO_GRAYSCALE);
+ } else { /* !cmap && cmapflag; add colormap to pixd */
+ pixd = pixCopy(NULL, pixs);
+ pixAddGrayColormap8(pixd);
+ return pixd;
+ }
+ } else if (d == 16) {
+ pixd = pixConvert16To8(pixs, L_MS_BYTE);
+ if (cmapflag)
+ pixAddGrayColormap8(pixd);
+ return pixd;
+ } else if (d == 24) {
+ pix1 = pixConvert24To32(pixs);
+ pixd = pixConvertRGBToLuminance(pix1);
+ if (cmapflag)
+ pixAddGrayColormap8(pixd);
+ pixDestroy(&pix1);
+ return pixd;
+ } else { /* d == 32 */
+ pixd = pixConvertRGBToLuminance(pixs);
+ if (cmapflag)
+ pixAddGrayColormap8(pixd);
+ return pixd;
+ }
+}
+
+
+/*!
+ * \brief pixConvertTo8BySampling()
+ *
+ * \param[in] pixs 1, 2, 4, 8, 16 or 32 bpp
+ * \param[in] factor submsampling factor; integer >= 1
+ * \param[in] cmapflag TRUE if pixd is to have a colormap; FALSE otherwise
+ * \return pixd 8 bpp, or NULL on error
+ *
+ * <pre>
+ * Notes:
+ * (1) This is a fast, quick/dirty, top-level converter.
+ * (2) See pixConvertTo8() for default values.
+ * </pre>
+ */
+PIX *
+pixConvertTo8BySampling(PIX *pixs,
+ l_int32 factor,
+ l_int32 cmapflag)
+{
+l_float32 scalefactor;
+PIX *pixt, *pixd;
+
+ PROCNAME("pixConvertTo8BySampling");
+
+ if (!pixs)
+ return (PIX *)ERROR_PTR("pixs not defined", procName, NULL);
+ if (factor < 1)
+ return (PIX *)ERROR_PTR("factor must be >= 1", procName, NULL);
+
+ scalefactor = 1. / (l_float32)factor;
+ pixt = pixScaleBySampling(pixs, scalefactor, scalefactor);
+ pixd = pixConvertTo8(pixt, cmapflag);
+
+ pixDestroy(&pixt);
+ return pixd;
+}
+
+
+/*!
+ * \brief pixConvertTo8Colormap()
+ *
+ * \param[in] pixs 1, 2, 4, 8, 16 or 32 bpp
+ * \param[in] dither 1 to dither if necessary; 0 otherwise
+ * \return pixd 8 bpp, cmapped, or NULL on error
+ *
+ * <pre>
+ * Notes:
+ * (1) This is a top-level function, with simple default values
+ * for unpacking.
+ * (2) The result, pixd, is always made with a colormap.
+ * (3) If d == 8, the operation is lossless and it returns a copy.
+ * (4) The default values used for increasing depth are:
+ * ~ 1 bpp: val0 = 255, val1 = 0
+ * ~ 2 bpp: 4 bpp: even increments over dynamic range
+ * (5) For 16 bpp, use the most significant byte.
+ * (6) For 32 bpp RGB, use octcube quantization with optional dithering.
+ * </pre>
+ */
+PIX *
+pixConvertTo8Colormap(PIX *pixs,
+ l_int32 dither)
+{
+l_int32 d;
+
+ PROCNAME("pixConvertTo8Colormap");
+
+ if (!pixs)
+ return (PIX *)ERROR_PTR("pixs not defined", procName, NULL);
+ d = pixGetDepth(pixs);
+ if (d != 1 && d != 2 && d != 4 && d != 8 && d != 16 && d != 32)
+ return (PIX *)ERROR_PTR("depth not {1,2,4,8,16,32}", procName, NULL);
+
+ if (d != 32)
+ return pixConvertTo8(pixs, 1);
+
+ return pixConvertRGBToColormap(pixs, dither);
+}
+
+
+/*---------------------------------------------------------------------------*
+ * Top-level conversion to 16 bpp *
+ *---------------------------------------------------------------------------*/
+/*!
+ * \brief pixConvertTo16()
+ *
+ * \param[in] pixs 1, 8 bpp
+ * \return pixd 16 bpp, or NULL on error
+ *
+ * Usage: Top-level function, with simple default values for unpacking.
+ * 1 bpp: val0 = 0xffff, val1 = 0
+ * 8 bpp: replicates the 8 bit value in both the MSB and LSB
+ * of the 16 bit pixel.
+ */
+PIX *
+pixConvertTo16(PIX *pixs)
+{
+l_int32 d;
+
+ PROCNAME("pixConvertTo16");
+
+ if (!pixs)
+ return (PIX *)ERROR_PTR("pixs not defined", procName, NULL);
+
+ d = pixGetDepth(pixs);
+ if (d == 1)
+ return pixConvert1To16(NULL, pixs, 0xffff, 0);
+ else if (d == 8)
+ return pixConvert8To16(pixs, 8);
+ else
+ return (PIX *)ERROR_PTR("src depth not 1 or 8 bpp", procName, NULL);
+}
+
+
+
+/*---------------------------------------------------------------------------*
+ * Top-level conversion to 32 bpp *
+ *---------------------------------------------------------------------------*/
+/*!
+ * \brief pixConvertTo32()
+ *
+ * \param[in] pixs 1, 2, 4, 8, 16, 24 or 32 bpp
+ * \return pixd 32 bpp, or NULL on error
+ *
+ * Usage: Top-level function, with simple default values for unpacking.
+ * 1 bpp: val0 = 255, val1 = 0
+ * and then replication into R, G and B components
+ * 2 bpp: if colormapped, use the colormap values; otherwise,
+ * use val0 = 0, val1 = 0x55, val2 = 0xaa, val3 = 255
+ * and replicate gray into R, G and B components
+ * 4 bpp: if colormapped, use the colormap values; otherwise,
+ * replicate 2 nybs into a byte, and then into R,G,B components
+ * 8 bpp: if colormapped, use the colormap values; otherwise,
+ * replicate gray values into R, G and B components
+ * 16 bpp: replicate MSB into R, G and B components
+ * 24 bpp: unpack the pixels, maintaining word alignment on each scanline
+ * 32 bpp: makes a copy
+ *
+ * <pre>
+ * Notes:
+ * (1) Never returns a clone of pixs.
+ * </pre>
+ */
+PIX *
+pixConvertTo32(PIX *pixs)
+{
+l_int32 d;
+PIX *pix1, *pixd;
+
+ PROCNAME("pixConvertTo32");
+
+ if (!pixs)
+ return (PIX *)ERROR_PTR("pixs not defined", procName, NULL);
+
+ d = pixGetDepth(pixs);
+ if (d == 1) {
+ return pixConvert1To32(NULL, pixs, 0xffffffff, 0);
+ } else if (d == 2) {
+ pix1 = pixConvert2To8(pixs, 0, 85, 170, 255, TRUE);
+ pixd = pixConvert8To32(pix1);
+ pixDestroy(&pix1);
+ return pixd;
+ } else if (d == 4) {
+ pix1 = pixConvert4To8(pixs, TRUE);
+ pixd = pixConvert8To32(pix1);
+ pixDestroy(&pix1);
+ return pixd;
+ } else if (d == 8) {
+ return pixConvert8To32(pixs);
+ } else if (d == 16) {
+ pix1 = pixConvert16To8(pixs, L_MS_BYTE);
+ pixd = pixConvert8To32(pix1);
+ pixDestroy(&pix1);
+ return pixd;
+ } else if (d == 24) {
+ return pixConvert24To32(pixs);
+ } else if (d == 32) {
+ return pixCopy(NULL, pixs);
+ } else {
+ return (PIX *)ERROR_PTR("depth not 1, 2, 4, 8, 16, 32 bpp",
+ procName, NULL);
+ }
+}
+
+
+/*!
+ * \brief pixConvertTo32BySampling()
+ *
+ * \param[in] pixs 1, 2, 4, 8, 16, 24 or 32 bpp
+ * \param[in] factor submsampling factor; integer >= 1
+ * \return pixd 32 bpp, or NULL on error
+ *
+ * <pre>
+ * Notes:
+ * (1) This is a fast, quick/dirty, top-level converter.
+ * (2) See pixConvertTo32() for default values.
+ * </pre>
+ */
+PIX *
+pixConvertTo32BySampling(PIX *pixs,
+ l_int32 factor)
+{
+l_float32 scalefactor;
+PIX *pix1, *pixd;
+
+ PROCNAME("pixConvertTo32BySampling");
+
+ if (!pixs)
+ return (PIX *)ERROR_PTR("pixs not defined", procName, NULL);
+ if (factor < 1)
+ return (PIX *)ERROR_PTR("factor must be >= 1", procName, NULL);
+
+ scalefactor = 1. / (l_float32)factor;
+ pix1 = pixScaleBySampling(pixs, scalefactor, scalefactor);
+ pixd = pixConvertTo32(pix1);
+
+ pixDestroy(&pix1);
+ return pixd;
+}
+
+
+/*!
+ * \brief pixConvert8To32()
+ *
+ * \param[in] pixs 8 bpp
+ * \return 32 bpp rgb pix, or NULL on error
+ *
+ * <pre>
+ * Notes:
+ * (1) If there is no colormap, replicates the gray value
+ * into the 3 MSB of the dest pixel.
+ * </pre>
+ */
+PIX *
+pixConvert8To32(PIX *pixs)
+{
+l_int32 i, j, w, h, wpls, wpld, val;
+l_uint32 *datas, *datad, *lines, *lined;
+l_uint32 *tab;
+PIX *pixd;
+
+ PROCNAME("pixConvert8To32");
+
+ if (!pixs)
+ return (PIX *)ERROR_PTR("pixs not defined", procName, NULL);
+ if (pixGetDepth(pixs) != 8)
+ return (PIX *)ERROR_PTR("pixs not 8 bpp", procName, NULL);
+
+ if (pixGetColormap(pixs))
+ return pixRemoveColormap(pixs, REMOVE_CMAP_TO_FULL_COLOR);
+
+ pixGetDimensions(pixs, &w, &h, NULL);
+ datas = pixGetData(pixs);
+ wpls = pixGetWpl(pixs);
+ if ((pixd = pixCreate(w, h, 32)) == NULL)
+ return (PIX *)ERROR_PTR("pixd not made", procName, NULL);
+ pixCopyResolution(pixd, pixs);
+ pixCopyInputFormat(pixd, pixs);
+ datad = pixGetData(pixd);
+ wpld = pixGetWpl(pixd);
+
+ /* Replication table gray --> rgb */
+ tab = (l_uint32 *)LEPT_CALLOC(256, sizeof(l_uint32));
+ for (i = 0; i < 256; i++)
+ tab[i] = ((l_uint32)i << 24) | (i << 16) | (i << 8);
+
+ /* Replicate 1 --> 4 bytes (alpha byte not set) */
+ for (i = 0; i < h; i++) {
+ lines = datas + i * wpls;
+ lined = datad + i * wpld;
+ for (j = 0; j < w; j++) {
+ val = GET_DATA_BYTE(lines, j);
+ lined[j] = tab[val];
+ }
+ }
+
+ LEPT_FREE(tab);
+ return pixd;
+}
+
+
+/*---------------------------------------------------------------------------*
+ * Top-level conversion to 8 or 32 bpp, without colormap *
+ *---------------------------------------------------------------------------*/
+/*!
+ * \brief pixConvertTo8Or32()
+ *
+ * \param[in] pixs 1, 2, 4, 8, 16, with or without colormap;
+ * or 32 bpp rgb
+ * \param[in] copyflag L_CLONE or L_COPY
+ * \param[in] warnflag 1 to issue warning if colormap is removed; else 0
+ * \return pixd 8 bpp grayscale or 32 bpp rgb, or NULL on error
+ *
+ * <pre>
+ * Notes:
+ * (1) If there is a colormap, the colormap is removed to 8 or 32 bpp,
+ * depending on whether the colors in the colormap are all gray.
+ * (2) If the input is either rgb or 8 bpp without a colormap,
+ * this returns either a clone or a copy, depending on %copyflag.
+ * (3) Otherwise, the pix is converted to 8 bpp grayscale.
+ * In all cases, pixd does not have a colormap.
+ * </pre>
+ */
+PIX *
+pixConvertTo8Or32(PIX *pixs,
+ l_int32 copyflag,
+ l_int32 warnflag)
+{
+l_int32 d;
+PIX *pixd;
+
+ PROCNAME("pixConvertTo8Or32");
+
+ if (!pixs)
+ return (PIX *)ERROR_PTR("pixs not defined", procName, NULL);
+ if (copyflag != L_CLONE && copyflag != L_COPY)
+ return (PIX *)ERROR_PTR("invalid copyflag", procName, NULL);
+
+ d = pixGetDepth(pixs);
+ if (pixGetColormap(pixs)) {
+ if (warnflag) L_WARNING("pix has colormap; removing\n", procName);
+ pixd = pixRemoveColormap(pixs, REMOVE_CMAP_BASED_ON_SRC);
+ } else if (d == 8 || d == 32) {
+ if (copyflag == L_CLONE)
+ pixd = pixClone(pixs);
+ else /* copyflag == L_COPY */
+ pixd = pixCopy(NULL, pixs);
+ } else {
+ pixd = pixConvertTo8(pixs, 0);
+ }
+
+ /* Sanity check on result */
+ d = pixGetDepth(pixd);
+ if (d != 8 && d != 32) {
+ pixDestroy(&pixd);
+ return (PIX *)ERROR_PTR("depth not 8 or 32 bpp", procName, NULL);
+ }
+
+ return pixd;
+}
+
+
+/*---------------------------------------------------------------------------*
+ * Conversion between 24 bpp and 32 bpp rgb *
+ *---------------------------------------------------------------------------*/
+/*!
+ * \brief pixConvert24To32()
+ *
+ * \param[in] pixs 24 bpp rgb
+ * \return pixd 32 bpp rgb, or NULL on error
+ *
+ * <pre>
+ * Notes:
+ * (1) 24 bpp rgb pix are not supported in leptonica, except for a small
+ * number of formatted write operations. The data is a byte array,
+ * with pixels in order r,g,b, and padded to 32 bit boundaries
+ * in each line.
+ * (2) Because 24 bpp rgb pix are conveniently generated by programs
+ * such as xpdf (which has SplashBitmaps that store the raster
+ * data in consecutive 24-bit rgb pixels), it is useful to provide
+ * 24 bpp pix that simply incorporate that data. The only things
+ * we can do with these are:
+ * (a) write them to file in png, jpeg, tiff and pnm
+ * (b) interconvert between 24 and 32 bpp in memory (for testing).
+ * </pre>
+ */
+PIX *
+pixConvert24To32(PIX *pixs)
+{
+l_uint8 *lines;
+l_int32 w, h, d, i, j, wpls, wpld, rval, gval, bval;
+l_uint32 pixel;
+l_uint32 *datas, *datad, *lined;
+PIX *pixd;
+
+ PROCNAME("pixConvert24to32");
+
+ if (!pixs)
+ return (PIX *)ERROR_PTR("pixs not defined", procName, NULL);
+ pixGetDimensions(pixs, &w, &h, &d);
+ if (d != 24)
+ return (PIX *)ERROR_PTR("pixs not 24 bpp", procName, NULL);
+
+ pixd = pixCreateNoInit(w, h, 32);
+ datas = pixGetData(pixs);
+ datad = pixGetData(pixd);
+ wpls = pixGetWpl(pixs);
+ wpld = pixGetWpl(pixd);
+ for (i = 0; i < h; i++) {
+ lines = (l_uint8 *)(datas + i * wpls);
+ lined = datad + i * wpld;
+ for (j = 0; j < w; j++) {
+ rval = *lines++;
+ gval = *lines++;
+ bval = *lines++;
+ composeRGBPixel(rval, gval, bval, &pixel);
+ lined[j] = pixel;
+ }
+ }
+ pixCopyResolution(pixd, pixs);
+ pixCopyInputFormat(pixd, pixs);
+ return pixd;
+}
+
+
+/*!
+ * \brief pixConvert32To24()
+ *
+ * \param[in] pixs 32 bpp rgb
+ * \return pixd 24 bpp rgb, or NULL on error
+ *
+ * <pre>
+ * Notes:
+ * (1) See pixconvert24To32().
+ * </pre>
+ */
+PIX *
+pixConvert32To24(PIX *pixs)
+{
+l_uint8 *rgbdata8;
+l_int32 w, h, d, i, j, wpls, wpld, rval, gval, bval;
+l_uint32 *datas, *lines, *rgbdata;
+PIX *pixd;
+
+ PROCNAME("pixConvert32to24");
+
+ if (!pixs)
+ return (PIX *)ERROR_PTR("pixs not defined", procName, NULL);
+ pixGetDimensions(pixs, &w, &h, &d);
+ if (d != 32)
+ return (PIX *)ERROR_PTR("pixs not 32 bpp", procName, NULL);
+
+ datas = pixGetData(pixs);
+ wpls = pixGetWpl(pixs);
+ pixd = pixCreateNoInit(w, h, 24);
+ rgbdata = pixGetData(pixd);
+ wpld = pixGetWpl(pixd);
+ for (i = 0; i < h; i++) {
+ lines = datas + i * wpls;
+ rgbdata8 = (l_uint8 *)(rgbdata + i * wpld);
+ for (j = 0; j < w; j++) {
+ extractRGBValues(lines[j], &rval, &gval, &bval);
+ *rgbdata8++ = rval;
+ *rgbdata8++ = gval;
+ *rgbdata8++ = bval;
+ }
+ }
+ pixCopyResolution(pixd, pixs);
+ pixCopyInputFormat(pixd, pixs);
+ return pixd;
+}
+
+
+/*---------------------------------------------------------------------------*
+ * Conversion between 32 bpp (1 spp) and 16 or 8 bpp *
+ *---------------------------------------------------------------------------*/
+/*!
+ * \brief pixConvert32To16()
+ *
+ * \param[in] pixs 32 bpp, single component
+ * \param[in] type L_LS_TWO_BYTES, L_MS_TWO_BYTES, L_CLIP_TO_FFFF
+ * \return pixd 16 bpp , or NULL on error
+ *
+ * <pre>
+ * Notes:
+ * (1) The data in pixs is typically used for labelling.
+ * It is an array of l_uint32 values, not rgb or rgba.
+ * </pre>
+ */
+PIX *
+pixConvert32To16(PIX *pixs,
+ l_int32 type)
+{
+l_uint16 dword;
+l_int32 w, h, i, j, wpls, wpld;
+l_uint32 sword;
+l_uint32 *datas, *lines, *datad, *lined;
+PIX *pixd;
+
+ PROCNAME("pixConvert32to16");
+
+ if (!pixs || pixGetDepth(pixs) != 32)
+ return (PIX *)ERROR_PTR("pixs undefined or not 32 bpp", procName, NULL);
+ if (type != L_LS_TWO_BYTES && type != L_MS_TWO_BYTES &&
+ type != L_CLIP_TO_FFFF)
+ return (PIX *)ERROR_PTR("invalid type", procName, NULL);
+
+ pixGetDimensions(pixs, &w, &h, NULL);
+ if ((pixd = pixCreate(w, h, 16)) == NULL)
+ return (PIX *)ERROR_PTR("pixd not made", procName, NULL);
+ pixCopyResolution(pixd, pixs);
+ pixCopyInputFormat(pixd, pixs);
+ wpls = pixGetWpl(pixs);
+ datas = pixGetData(pixs);
+ wpld = pixGetWpl(pixd);
+ datad = pixGetData(pixd);
+
+ for (i = 0; i < h; i++) {
+ lines = datas + i * wpls;
+ lined = datad + i * wpld;
+ if (type == L_LS_TWO_BYTES) {
+ for (j = 0; j < wpls; j++) {
+ sword = *(lines + j);
+ dword = sword & 0xffff;
+ SET_DATA_TWO_BYTES(lined, j, dword);
+ }
+ } else if (type == L_MS_TWO_BYTES) {
+ for (j = 0; j < wpls; j++) {
+ sword = *(lines + j);
+ dword = sword >> 16;
+ SET_DATA_TWO_BYTES(lined, j, dword);
+ }
+ } else { /* type == L_CLIP_TO_FFFF */
+ for (j = 0; j < wpls; j++) {
+ sword = *(lines + j);
+ dword = (sword >> 16) ? 0xffff : (sword & 0xffff);
+ SET_DATA_TWO_BYTES(lined, j, dword);
+ }
+ }
+ }
+
+ return pixd;
+}
+
+
+/*!
+ * \brief pixConvert32To8()
+ *
+ * \param[in] pixs 32 bpp, single component
+ * \param[in] type16 L_LS_TWO_BYTES, L_MS_TWO_BYTES, L_CLIP_TO_FFFF
+ * \param[in] type8 L_LS_BYTE, L_MS_BYTE, L_CLIP_TO_FF
+ * \return pixd 8 bpp, or NULL on error
+ */
+PIX *
+pixConvert32To8(PIX *pixs,
+ l_int32 type16,
+ l_int32 type8)
+{
+PIX *pix1, *pixd;
+
+ PROCNAME("pixConvert32to8");
+
+ if (!pixs || pixGetDepth(pixs) != 32)
+ return (PIX *)ERROR_PTR("pixs undefined or not 32 bpp", procName, NULL);
+ if (type16 != L_LS_TWO_BYTES && type16 != L_MS_TWO_BYTES &&
+ type16 != L_CLIP_TO_FFFF)
+ return (PIX *)ERROR_PTR("invalid type16", procName, NULL);
+ if (type8 != L_LS_BYTE && type8 != L_MS_BYTE && type8 != L_CLIP_TO_FF)
+ return (PIX *)ERROR_PTR("invalid type8", procName, NULL);
+
+ pix1 = pixConvert32To16(pixs, type16);
+ pixd = pixConvert16To8(pix1, type8);
+ pixDestroy(&pix1);
+ return pixd;
+}
+
+
+/*---------------------------------------------------------------------------*
+ * Removal of alpha component by blending with white background *
+ *---------------------------------------------------------------------------*/
+/*!
+ * \brief pixRemoveAlpha()
+ *
+ * \param[in] pixs any depth
+ * \return pixd if 32 bpp rgba, pixs blended over a white background;
+ * a clone of pixs otherwise, and NULL on error
+ *
+ * <pre>
+ * Notes:
+ * (1) This is a wrapper on pixAlphaBlendUniform()
+ * </pre>
+ */
+PIX *
+pixRemoveAlpha(PIX *pixs)
+{
+ PROCNAME("pixRemoveAlpha");
+
+ if (!pixs)
+ return (PIX *)ERROR_PTR("pixs not defined", procName, NULL);
+
+ if (pixGetDepth(pixs) == 32 && pixGetSpp(pixs) == 4)
+ return pixAlphaBlendUniform(pixs, 0xffffff00);
+ else
+ return pixClone(pixs);
+}
+
+
+/*---------------------------------------------------------------------------*
+ * Addition of alpha component to 1 bpp *
+ *---------------------------------------------------------------------------*/
+/*!
+ * \brief pixAddAlphaTo1bpp()
+ *
+ * \param[in] pixd [optional] 1 bpp, can be null or equal to pixs
+ * \param[in] pixs 1 bpp
+ * \return pixd 1 bpp with colormap and non-opaque alpha,
+ * or NULL on error
+ *
+ * <pre>
+ * Notes:
+ * (1) We don't use 1 bpp colormapped images with alpha in leptonica,
+ * but we support generating them (here), writing to png, and reading
+ * the png. On reading, they are converted to 32 bpp RGBA.
+ * (2) The background (0) pixels in pixs become fully transparent, and the
+ * foreground (1) pixels are fully opaque. Thus, pixd is a 1 bpp
+ * representation of a stencil, that can be used to paint over pixels
+ * of a backing image that are masked by the foreground in pixs.
+ * </pre>
+ */
+PIX *
+pixAddAlphaTo1bpp(PIX *pixd,
+ PIX *pixs)
+{
+PIXCMAP *cmap;
+
+ PROCNAME("pixAddAlphaTo1bpp");
+
+ if (!pixs || (pixGetDepth(pixs) != 1))
+ return (PIX *)ERROR_PTR("pixs undefined or not 1 bpp", procName, NULL);
+ if (pixd && (pixd != pixs))
+ return (PIX *)ERROR_PTR("pixd defined but != pixs", procName, NULL);
+
+ pixd = pixCopy(pixd, pixs);
+ cmap = pixcmapCreate(1);
+ pixSetColormap(pixd, cmap);
+ pixcmapAddRGBA(cmap, 255, 255, 255, 0); /* 0 ==> white + transparent */
+ pixcmapAddRGBA(cmap, 0, 0, 0, 255); /* 1 ==> black + opaque */
+ return pixd;
+}
+
+
+/*---------------------------------------------------------------------------*
+ * Lossless depth conversion (unpacking) *
+ *---------------------------------------------------------------------------*/
+/*!
+ * \brief pixConvertLossless()
+ *
+ * \param[in] pixs 1, 2, 4, 8 bpp, not cmapped
+ * \param[in] d destination depth: 2, 4 or 8
+ * \return pixd 2, 4 or 8 bpp, or NULL on error
+ *
+ * <pre>
+ * Notes:
+ * (1) This is a lossless unpacking (depth-increasing)
+ * conversion. If ds is the depth of pixs, then
+ * ~ if d < ds, returns NULL
+ * ~ if d == ds, returns a copy
+ * ~ if d > ds, does the unpacking conversion
+ * (2) If pixs has a colormap, this is an error.
+ * </pre>
+ */
+PIX *
+pixConvertLossless(PIX *pixs,
+ l_int32 d)
+{
+l_int32 w, h, ds, wpls, wpld, i, j, val;
+l_uint32 *datas, *datad, *lines, *lined;
+PIX *pixd;
+
+ PROCNAME("pixConvertLossless");
+
+ if (!pixs)
+ return (PIX *)ERROR_PTR("pixs not defined", procName, NULL);
+ if (pixGetColormap(pixs))
+ return (PIX *)ERROR_PTR("pixs has colormap", procName, NULL);
+ if (d != 2 && d != 4 && d != 8)
+ return (PIX *)ERROR_PTR("invalid dest depth", procName, NULL);
+
+ pixGetDimensions(pixs, &w, &h, &ds);
+ if (d < ds)
+ return (PIX *)ERROR_PTR("depth > d", procName, NULL);
+ else if (d == ds)
+ return pixCopy(NULL, pixs);
+
+ if ((pixd = pixCreate(w, h, d)) == NULL)
+ return (PIX *)ERROR_PTR("pixd not made", procName, NULL);
+ pixCopyResolution(pixd, pixs);
+ pixCopyInputFormat(pixd, pixs);
+
+ /* Unpack the bits */
+ datas = pixGetData(pixs);
+ wpls = pixGetWpl(pixs);
+ datad = pixGetData(pixd);
+ wpld = pixGetWpl(pixd);
+ for (i = 0; i < h; i++) {
+ lines = datas + i * wpls;
+ lined = datad + i * wpld;
+ switch (ds)
+ {
+ case 1:
+ for (j = 0; j < w; j++) {
+ val = GET_DATA_BIT(lines, j);
+ if (d == 8)
+ SET_DATA_BYTE(lined, j, val);
+ else if (d == 4)
+ SET_DATA_QBIT(lined, j, val);
+ else /* d == 2 */
+ SET_DATA_DIBIT(lined, j, val);
+ }
+ break;
+ case 2:
+ for (j = 0; j < w; j++) {
+ val = GET_DATA_DIBIT(lines, j);
+ if (d == 8)
+ SET_DATA_BYTE(lined, j, val);
+ else /* d == 4 */
+ SET_DATA_QBIT(lined, j, val);
+ }
+ break;
+ case 4:
+ for (j = 0; j < w; j++) {
+ val = GET_DATA_DIBIT(lines, j);
+ SET_DATA_BYTE(lined, j, val);
+ }
+ break;
+ }
+ }
+
+ return pixd;
+}
+
+
+/*---------------------------------------------------------------------------*
+ * Conversion for printing in PostScript *
+ *---------------------------------------------------------------------------*/
+/*!
+ * \brief pixConvertForPSWrap()
+ *
+ * \param[in] pixs 1, 2, 4, 8, 16, 32 bpp
+ * \return pixd 1, 8, or 32 bpp, or NULL on error
+ *
+ * <pre>
+ * Notes:
+ * (1) For wrapping in PostScript, we convert pixs to
+ * 1 bpp, 8 bpp (gray) and 32 bpp (RGB color).
+ * (2) Colormaps are removed. For pixs with colormaps, the
+ * images are converted to either 8 bpp gray or 32 bpp
+ * RGB, depending on whether the colormap has color content.
+ * (3) Images without colormaps, that are not 1 bpp or 32 bpp,
+ * are converted to 8 bpp gray.
+ * </pre>
+ */
+PIX *
+pixConvertForPSWrap(PIX *pixs)
+{
+l_int32 d;
+PIX *pixd;
+PIXCMAP *cmap;
+
+ PROCNAME("pixConvertForPSWrap");
+
+ if (!pixs)
+ return (PIX *)ERROR_PTR("pixs not defined", procName, NULL);
+
+ cmap = pixGetColormap(pixs);
+ d = pixGetDepth(pixs);
+ switch (d)
+ {
+ case 1:
+ case 32:
+ pixd = pixClone(pixs);
+ break;
+ case 2:
+ if (cmap)
+ pixd = pixRemoveColormap(pixs, REMOVE_CMAP_BASED_ON_SRC);
+ else
+ pixd = pixConvert2To8(pixs, 0, 0x55, 0xaa, 0xff, FALSE);
+ break;
+ case 4:
+ if (cmap)
+ pixd = pixRemoveColormap(pixs, REMOVE_CMAP_BASED_ON_SRC);
+ else
+ pixd = pixConvert4To8(pixs, FALSE);
+ break;
+ case 8:
+ pixd = pixRemoveColormap(pixs, REMOVE_CMAP_BASED_ON_SRC);
+ break;
+ case 16:
+ pixd = pixConvert16To8(pixs, L_MS_BYTE);
+ break;
+ default:
+ lept_stderr("depth not in {1, 2, 4, 8, 16, 32}");
+ return NULL;
+ }
+
+ return pixd;
+}
+
+
+/*---------------------------------------------------------------------------*
+ * Scaling conversion to subpixel RGB *
+ *---------------------------------------------------------------------------*/
+/*!
+ * \brief pixConvertToSubpixelRGB()
+ *
+ * \param[in] pixs 8 bpp grayscale, 32 bpp rgb, or colormapped
+ * \param[in] scalex, scaley anisotropic scaling permitted between
+ * source and destination
+ * \param[in] order of subpixel rgb color components in
+ * composition of pixd:
+ * L_SUBPIXEL_ORDER_RGB, L_SUBPIXEL_ORDER_BGR,
+ * L_SUBPIXEL_ORDER_VRGB, L_SUBPIXEL_ORDER_VBGR
+ * \return pixd 32 bpp, or NULL on error
+ *
+ * <pre>
+ * Notes:
+ * (1) If pixs has a colormap, it is removed based on its contents
+ * to either 8 bpp gray or rgb.
+ * (2) For horizontal subpixel splitting, the input image
+ * is rescaled by %scaley vertically and by 3.0 times
+ * %scalex horizontally. Then each horizontal triplet
+ * of pixels is mapped back to a single rgb pixel, with the
+ * r, g and b values being assigned based on the pixel triplet.
+ * For gray triplets, the r, g, and b values are set equal to
+ * the three gray values. For color triplets, the r, g and b
+ * values are set equal to the components from the appropriate
+ * subpixel. Vertical subpixel splitting is handled similarly.
+ * (3) See pixConvertGrayToSubpixelRGB() and
+ * pixConvertColorToSubpixelRGB() for further details.
+ * </pre>
+ */
+PIX *
+pixConvertToSubpixelRGB(PIX *pixs,
+ l_float32 scalex,
+ l_float32 scaley,
+ l_int32 order)
+{
+l_int32 d;
+PIX *pix1, *pixd;
+PIXCMAP *cmap;
+
+ PROCNAME("pixConvertToSubpixelRGB");
+
+ if (!pixs)
+ return (PIX *)ERROR_PTR("pixs not defined", procName, NULL);
+ d = pixGetDepth(pixs);
+ cmap = pixGetColormap(pixs);
+ if (d != 8 && d != 32 && !cmap)
+ return (PIX *)ERROR_PTR("pix not 8 or 32 bpp and not cmapped",
+ procName, NULL);
+ if (scalex <= 0.0 || scaley <= 0.0)
+ return (PIX *)ERROR_PTR("scale factors must be > 0", procName, NULL);
+ if (order != L_SUBPIXEL_ORDER_RGB && order != L_SUBPIXEL_ORDER_BGR &&
+ order != L_SUBPIXEL_ORDER_VRGB && order != L_SUBPIXEL_ORDER_VBGR)
+ return (PIX *)ERROR_PTR("invalid subpixel order", procName, NULL);
+ if ((pix1 = pixRemoveColormap(pixs, REMOVE_CMAP_BASED_ON_SRC)) == NULL)
+ return (PIX *)ERROR_PTR("pix1 not made", procName, NULL);
+
+ d = pixGetDepth(pix1);
+ pixd = NULL;
+ if (d == 8)
+ pixd = pixConvertGrayToSubpixelRGB(pix1, scalex, scaley, order);
+ else if (d == 32)
+ pixd = pixConvertColorToSubpixelRGB(pix1, scalex, scaley, order);
+ else
+ L_ERROR("invalid depth %d\n", procName, d);
+
+ pixDestroy(&pix1);
+ return pixd;
+}
+
+
+/*!
+ * \brief pixConvertGrayToSubpixelRGB()
+ *
+ * \param[in] pixs 8 bpp or colormapped
+ * \param[in] scalex, scaley
+ * \param[in] order of subpixel rgb color components in
+ * composition of pixd:
+ * L_SUBPIXEL_ORDER_RGB, L_SUBPIXEL_ORDER_BGR,
+ * L_SUBPIXEL_ORDER_VRGB, L_SUBPIXEL_ORDER_VBGR
+ * \return pixd 32 bpp, or NULL on error
+ *
+ * <pre>
+ * Notes:
+ * (1) If pixs has a colormap, it is removed to 8 bpp.
+ * (2) For horizontal subpixel splitting, the input gray image
+ * is rescaled by %scaley vertically and by 3.0 times
+ * %scalex horizontally. Then each horizontal triplet
+ * of pixels is mapped back to a single rgb pixel, with the
+ * r, g and b values being assigned from the triplet of gray values.
+ * Similar operations are used for vertical subpixel splitting.
+ * (3) This is a form of subpixel rendering that tends to give the
+ * resulting text a sharper and somewhat chromatic display.
+ * For horizontal subpixel splitting, the observable difference
+ * between %order=L_SUBPIXEL_ORDER_RGB and
+ * %order=L_SUBPIXEL_ORDER_BGR is reduced by optical diffusers
+ * in the display that make the pixel color appear to emerge
+ * from the entire pixel.
+ * </pre>
+ */
+PIX *
+pixConvertGrayToSubpixelRGB(PIX *pixs,
+ l_float32 scalex,
+ l_float32 scaley,
+ l_int32 order)
+{
+l_int32 w, h, d, wd, hd, wplt, wpld, i, j, rval, gval, bval, direction;
+l_uint32 *datat, *datad, *linet, *lined;
+PIX *pix1, *pix2, *pixd;
+PIXCMAP *cmap;
+
+ PROCNAME("pixConvertGrayToSubpixelRGB");
+
+ if (!pixs)
+ return (PIX *)ERROR_PTR("pixs not defined", procName, NULL);
+ d = pixGetDepth(pixs);
+ cmap = pixGetColormap(pixs);
+ if (d != 8 && !cmap)
+ return (PIX *)ERROR_PTR("pix not 8 bpp & not cmapped", procName, NULL);
+ if (scalex <= 0.0 || scaley <= 0.0)
+ return (PIX *)ERROR_PTR("scale factors must be > 0", procName, NULL);
+ if (order != L_SUBPIXEL_ORDER_RGB && order != L_SUBPIXEL_ORDER_BGR &&
+ order != L_SUBPIXEL_ORDER_VRGB && order != L_SUBPIXEL_ORDER_VBGR)
+ return (PIX *)ERROR_PTR("invalid subpixel order", procName, NULL);
+
+ direction =
+ (order == L_SUBPIXEL_ORDER_RGB || order == L_SUBPIXEL_ORDER_BGR)
+ ? L_HORIZ : L_VERT;
+ pix1 = pixRemoveColormap(pixs, REMOVE_CMAP_TO_GRAYSCALE);
+ if (direction == L_HORIZ)
+ pix2 = pixScale(pix1, 3.0 * scalex, scaley);
+ else /* L_VERT */
+ pix2 = pixScale(pix1, scalex, 3.0 * scaley);
+
+ pixGetDimensions(pix2, &w, &h, NULL);
+ wd = (direction == L_HORIZ) ? w / 3 : w;
+ hd = (direction == L_VERT) ? h / 3 : h;
+ pixd = pixCreate(wd, hd, 32);
+ datad = pixGetData(pixd);
+ wpld = pixGetWpl(pixd);
+ datat = pixGetData(pix2);
+ wplt = pixGetWpl(pix2);
+ if (direction == L_HORIZ) {
+ for (i = 0; i < hd; i++) {
+ linet = datat + i * wplt;
+ lined = datad + i * wpld;
+ for (j = 0; j < wd; j++) {
+ rval = GET_DATA_BYTE(linet, 3 * j);
+ gval = GET_DATA_BYTE(linet, 3 * j + 1);
+ bval = GET_DATA_BYTE(linet, 3 * j + 2);
+ if (order == L_SUBPIXEL_ORDER_RGB)
+ composeRGBPixel(rval, gval, bval, &lined[j]);
+ else /* order BGR */
+ composeRGBPixel(bval, gval, rval, &lined[j]);
+ }
+ }
+ } else { /* L_VERT */
+ for (i = 0; i < hd; i++) {
+ linet = datat + 3 * i * wplt;
+ lined = datad + i * wpld;
+ for (j = 0; j < wd; j++) {
+ rval = GET_DATA_BYTE(linet, j);
+ gval = GET_DATA_BYTE(linet + wplt, j);
+ bval = GET_DATA_BYTE(linet + 2 * wplt, j);
+ if (order == L_SUBPIXEL_ORDER_VRGB)
+ composeRGBPixel(rval, gval, bval, &lined[j]);
+ else /* order VBGR */
+ composeRGBPixel(bval, gval, rval, &lined[j]);
+ }
+ }
+ }
+
+ pixDestroy(&pix1);
+ pixDestroy(&pix2);
+ return pixd;
+}
+
+
+/*!
+ * \brief pixConvertColorToSubpixelRGB()
+ *
+ * \param[in] pixs 32 bpp or colormapped
+ * \param[in] scalex, scaley
+ * \param[in] order of subpixel rgb color components in
+ * composition of pixd:
+ * L_SUBPIXEL_ORDER_RGB, L_SUBPIXEL_ORDER_BGR,
+ * L_SUBPIXEL_ORDER_VRGB, L_SUBPIXEL_ORDER_VBGR
+ * \return pixd 32 bpp, or NULL on error
+ *
+ * <pre>
+ * Notes:
+ * (1) If pixs has a colormap, it is removed to 32 bpp rgb.
+ * If the colormap has no color, pixConvertGrayToSubpixelRGB()
+ * should be called instead, because it will give the same result
+ * more efficiently. The function pixConvertToSubpixelRGB()
+ * will do the best thing for all cases.
+ * (2) For horizontal subpixel splitting, the input rgb image
+ * is rescaled by %scaley vertically and by 3.0 times
+ * %scalex horizontally. Then for each horizontal triplet
+ * of pixels, the r component of the final pixel is selected
+ * from the r component of the appropriate pixel in the triplet,
+ * and likewise for g and b. Vertical subpixel splitting is
+ * handled similarly.
+ * </pre>
+ */
+PIX *
+pixConvertColorToSubpixelRGB(PIX *pixs,
+ l_float32 scalex,
+ l_float32 scaley,
+ l_int32 order)
+{
+l_int32 w, h, d, wd, hd, wplt, wpld, i, j, rval, gval, bval, direction;
+l_uint32 *datat, *datad, *linet, *lined;
+PIX *pix1, *pix2, *pixd;
+PIXCMAP *cmap;
+
+ PROCNAME("pixConvertColorToSubpixelRGB");
+
+ if (!pixs)
+ return (PIX *)ERROR_PTR("pixs not defined", procName, NULL);
+ d = pixGetDepth(pixs);
+ cmap = pixGetColormap(pixs);
+ if (d != 32 && !cmap)
+ return (PIX *)ERROR_PTR("pix not 32 bpp & not cmapped", procName, NULL);
+ if (scalex <= 0.0 || scaley <= 0.0)
+ return (PIX *)ERROR_PTR("scale factors must be > 0", procName, NULL);
+ if (order != L_SUBPIXEL_ORDER_RGB && order != L_SUBPIXEL_ORDER_BGR &&
+ order != L_SUBPIXEL_ORDER_VRGB && order != L_SUBPIXEL_ORDER_VBGR)
+ return (PIX *)ERROR_PTR("invalid subpixel order", procName, NULL);
+
+ direction =
+ (order == L_SUBPIXEL_ORDER_RGB || order == L_SUBPIXEL_ORDER_BGR)
+ ? L_HORIZ : L_VERT;
+ pix1 = pixRemoveColormap(pixs, REMOVE_CMAP_TO_FULL_COLOR);
+ if (direction == L_HORIZ)
+ pix2 = pixScale(pix1, 3.0 * scalex, scaley);
+ else /* L_VERT */
+ pix2 = pixScale(pix1, scalex, 3.0 * scaley);
+
+ pixGetDimensions(pix2, &w, &h, NULL);
+ wd = (direction == L_HORIZ) ? w / 3 : w;
+ hd = (direction == L_VERT) ? h / 3 : h;
+ pixd = pixCreate(wd, hd, 32);
+ pixCopyInputFormat(pixd, pixs);
+ datad = pixGetData(pixd);
+ wpld = pixGetWpl(pixd);
+ datat = pixGetData(pix2);
+ wplt = pixGetWpl(pix2);
+ if (direction == L_HORIZ) {
+ for (i = 0; i < hd; i++) {
+ linet = datat + i * wplt;
+ lined = datad + i * wpld;
+ for (j = 0; j < wd; j++) {
+ if (order == L_SUBPIXEL_ORDER_RGB) {
+ extractRGBValues(linet[3 * j], &rval, NULL, NULL);
+ extractRGBValues(linet[3 * j + 1], NULL, &gval, NULL);
+ extractRGBValues(linet[3 * j + 2], NULL, NULL, &bval);
+ } else { /* order BGR */
+ extractRGBValues(linet[3 * j], NULL, NULL, &bval);
+ extractRGBValues(linet[3 * j + 1], NULL, &gval, NULL);
+ extractRGBValues(linet[3 * j + 2], &rval, NULL, NULL);
+ }
+ composeRGBPixel(rval, gval, bval, &lined[j]);
+ }
+ }
+ } else { /* L_VERT */
+ for (i = 0; i < hd; i++) {
+ linet = datat + 3 * i * wplt;
+ lined = datad + i * wpld;
+ for (j = 0; j < wd; j++) {
+ if (order == L_SUBPIXEL_ORDER_VRGB) {
+ extractRGBValues(linet[j], &rval, NULL, NULL);
+ extractRGBValues((linet + wplt)[j], NULL, &gval, NULL);
+ extractRGBValues((linet + 2 * wplt)[j], NULL, NULL, &bval);
+ } else { /* order VBGR */
+ extractRGBValues(linet[j], NULL, NULL, &bval);
+ extractRGBValues((linet + wplt)[j], NULL, &gval, NULL);
+ extractRGBValues((linet + 2 * wplt)[j], &rval, NULL, NULL);
+ }
+ composeRGBPixel(rval, gval, bval, &lined[j]);
+ }
+ }
+ }
+
+ if (pixGetSpp(pixs) == 4)
+ pixScaleAndTransferAlpha(pixd, pixs, scalex, scaley);
+
+ pixDestroy(&pix1);
+ pixDestroy(&pix2);
+ return pixd;
+}
+
+
+/*---------------------------------------------------------------------*
+ * Setting neutral point for min/max boost conversion to gray *
+ *---------------------------------------------------------------------*/
+/*!
+ * \brief l_setNeutralBoostVal()
+ *
+ * \param[in] val between 1 and 255; typical value is 180
+ * \return void
+ *
+ * <pre>
+ * Notes:
+ * (1) This raises or lowers the selected min or max RGB component value,
+ * depending on if that component is above or below this value.
+ * </pre>
+ */
+void
+l_setNeutralBoostVal(l_int32 val)
+{
+ PROCNAME("l_setNeutralBoostVal");
+
+ if (val <= 0) {
+ L_ERROR("invalid reference value for neutral boost\n", procName);
+ return;
+ }
+ var_NEUTRAL_BOOST_VAL = val;
+}