summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'tesseract/src/classify/adaptmatch.cpp')
-rw-r--r--tesseract/src/classify/adaptmatch.cpp2317
1 files changed, 2317 insertions, 0 deletions
diff --git a/tesseract/src/classify/adaptmatch.cpp b/tesseract/src/classify/adaptmatch.cpp
new file mode 100644
index 00000000..65254b8a
--- /dev/null
+++ b/tesseract/src/classify/adaptmatch.cpp
@@ -0,0 +1,2317 @@
+/******************************************************************************
+ ** Filename: adaptmatch.cpp
+ ** Purpose: High level adaptive matcher.
+ ** Author: Dan Johnson
+ **
+ ** (c) Copyright Hewlett-Packard Company, 1988.
+ ** Licensed under the Apache License, Version 2.0 (the "License");
+ ** you may not use this file except in compliance with the License.
+ ** You may obtain a copy of the License at
+ ** http://www.apache.org/licenses/LICENSE-2.0
+ ** Unless required by applicable law or agreed to in writing, software
+ ** distributed under the License is distributed on an "AS IS" BASIS,
+ ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ ** See the License for the specific language governing permissions and
+ ** limitations under the License.
+ ******************************************************************************/
+
+/*-----------------------------------------------------------------------------
+ Include Files and Type Defines
+-----------------------------------------------------------------------------*/
+#ifdef HAVE_CONFIG_H
+#include "config_auto.h"
+#endif
+
+#include "adaptive.h" // for ADAPT_CLASS, free_adapted_templates
+#include "ambigs.h" // for UnicharIdVector, UnicharAmbigs
+#include "bitvec.h" // for FreeBitVector, NewBitVector, BIT_VECTOR
+#include "blobs.h" // for TBLOB, TWERD
+#include "classify.h" // for Classify, CST_FRAGMENT, CST_WHOLE
+#include "dict.h" // for Dict
+#include "errcode.h" // for ASSERT_HOST
+#include "featdefs.h" // for CharNormDesc
+#include "float2int.h" // for BASELINE_Y_SHIFT
+#include "fontinfo.h" // for ScoredFont, FontSet
+#include "intfx.h" // for BlobToTrainingSample, INT_FX_RESULT_S...
+#include "intmatcher.h" // for CP_RESULT_STRUCT, IntegerMatcher
+#include "intproto.h" // for INT_FEATURE_STRUCT, (anonymous), Clas...
+#include "matchdefs.h" // for CLASS_ID, FEATURE_ID, PROTO_ID, NO_PROTO
+#include "mfoutline.h" // for baseline, character, MF_SCALE_FACTOR
+#include "normalis.h" // for DENORM, kBlnBaselineOffset, kBlnXHeight
+#include "normfeat.h" // for ActualOutlineLength, CharNormLength
+#include "ocrfeatures.h" // for FEATURE_STRUCT, FreeFeatureSet, FEATURE
+#include "oldlist.h" // for push, delete_d
+#include "outfeat.h" // for OutlineFeatDir, OutlineFeatLength
+#include "pageres.h" // for WERD_RES
+#include "params.h" // for IntParam, BoolParam, DoubleParam, Str...
+#include "picofeat.h" // for PicoFeatDir, PicoFeatX, PicoFeatY
+#include "protos.h" // for PROTO_STRUCT, FillABC, PROTO
+#include "ratngs.h" // for BLOB_CHOICE_IT, BLOB_CHOICE_LIST, BLO...
+#include "rect.h" // for TBOX
+#include "scrollview.h" // for ScrollView, ScrollView::BROWN, Scroll...
+#include "seam.h" // for SEAM
+#include "shapeclassifier.h" // for ShapeClassifier
+#include "shapetable.h" // for UnicharRating, ShapeTable, Shape, Uni...
+#include "tessclassifier.h" // for TessClassifier
+#include "tessdatamanager.h" // for TessdataManager, TESSDATA_INTTEMP
+#include "tprintf.h" // for tprintf
+#include "trainingsample.h" // for TrainingSample
+#include "unicharset.h" // for UNICHARSET, CHAR_FRAGMENT, UNICHAR_SPACE
+#include "unicity_table.h" // for UnicityTable
+
+#include "genericvector.h" // for GenericVector
+#include "serialis.h" // for TFile
+#include "strngs.h" // for STRING
+#include "helpers.h" // for IntCastRounded, ClipToRange
+#include <tesseract/unichar.h> // for UNICHAR_ID, INVALID_UNICHAR_ID
+
+#include <algorithm> // for max, min
+#include <cassert> // for assert
+#include <cmath> // for fabs
+#include <cstdint> // for INT32_MAX, UINT8_MAX
+#include <cstdio> // for fflush, fclose, fopen, stdout, FILE
+#include <cstdlib> // for malloc
+#include <cstring> // for strstr, memset, strcmp
+
+namespace tesseract {
+
+#define ADAPT_TEMPLATE_SUFFIX ".a"
+
+#define MAX_MATCHES 10
+#define UNLIKELY_NUM_FEAT 200
+#define NO_DEBUG 0
+#define MAX_ADAPTABLE_WERD_SIZE 40
+
+#define ADAPTABLE_WERD_ADJUSTMENT (0.05)
+
+#define Y_DIM_OFFSET (Y_SHIFT - BASELINE_Y_SHIFT)
+
+#define WORST_POSSIBLE_RATING (0.0f)
+
+struct ADAPT_RESULTS {
+ int32_t BlobLength;
+ bool HasNonfragment;
+ UNICHAR_ID best_unichar_id;
+ int best_match_index;
+ float best_rating;
+ std::vector<UnicharRating> match;
+ std::vector<CP_RESULT_STRUCT> CPResults;
+
+ /// Initializes data members to the default values. Sets the initial
+ /// rating of each class to be the worst possible rating (1.0).
+ inline void Initialize() {
+ BlobLength = INT32_MAX;
+ HasNonfragment = false;
+ ComputeBest();
+ }
+ // Computes best_unichar_id, best_match_index and best_rating.
+ void ComputeBest() {
+ best_unichar_id = INVALID_UNICHAR_ID;
+ best_match_index = -1;
+ best_rating = WORST_POSSIBLE_RATING;
+ for (int i = 0; i < match.size(); ++i) {
+ if (match[i].rating > best_rating) {
+ best_rating = match[i].rating;
+ best_unichar_id = match[i].unichar_id;
+ best_match_index = i;
+ }
+ }
+ }
+};
+
+struct PROTO_KEY {
+ ADAPT_TEMPLATES Templates;
+ CLASS_ID ClassId;
+ int ConfigId;
+};
+
+// Sort function to sort ratings appropriately by descending rating.
+static bool SortDescendingRating(const UnicharRating &a, const UnicharRating &b) {
+ if (a.rating != b.rating) {
+ return a.rating > b.rating;
+ } else {
+ return a.unichar_id < b.unichar_id;
+ }
+}
+
+/*-----------------------------------------------------------------------------
+ Private Macros
+-----------------------------------------------------------------------------*/
+inline bool MarginalMatch(float confidence, float matcher_great_threshold) {
+ return (1.0f - confidence) > matcher_great_threshold;
+}
+
+/*-----------------------------------------------------------------------------
+ Private Function Prototypes
+-----------------------------------------------------------------------------*/
+// Returns the index of the given id in results, if present, or the size of the
+// vector (index it will go at) if not present.
+static int FindScoredUnichar(UNICHAR_ID id, const ADAPT_RESULTS& results) {
+ for (int i = 0; i < results.match.size(); i++) {
+ if (results.match[i].unichar_id == id)
+ return i;
+ }
+ return results.match.size();
+}
+
+// Returns the current rating for a unichar id if we have rated it, defaulting
+// to WORST_POSSIBLE_RATING.
+static float ScoredUnichar(UNICHAR_ID id, const ADAPT_RESULTS& results) {
+ int index = FindScoredUnichar(id, results);
+ if (index >= results.match.size()) return WORST_POSSIBLE_RATING;
+ return results.match[index].rating;
+}
+
+void InitMatcherRatings(float *Rating);
+
+int MakeTempProtoPerm(void *item1, void *item2);
+
+void SetAdaptiveThreshold(float Threshold);
+
+
+/*-----------------------------------------------------------------------------
+ Public Code
+-----------------------------------------------------------------------------*/
+/**
+ * This routine calls the adaptive matcher
+ * which returns (in an array) the class id of each
+ * class matched.
+ *
+ * It also returns the number of classes matched.
+ * For each class matched it places the best rating
+ * found for that class into the Ratings array.
+ *
+ * Bad matches are then removed so that they don't
+ * need to be sorted. The remaining good matches are
+ * then sorted and converted to choices.
+ *
+ * This routine also performs some simple speckle
+ * filtering.
+ *
+ * @param Blob blob to be classified
+ * @param[out] Choices List of choices found by adaptive matcher.
+ * filled on return with the choices found by the
+ * class pruner and the ratings therefrom. Also
+ * contains the detailed results of the integer matcher.
+ *
+ */
+void Classify::AdaptiveClassifier(TBLOB *Blob, BLOB_CHOICE_LIST *Choices) {
+ assert(Choices != nullptr);
+ auto *Results = new ADAPT_RESULTS;
+ Results->Initialize();
+
+ ASSERT_HOST(AdaptedTemplates != nullptr);
+
+ DoAdaptiveMatch(Blob, Results);
+
+ RemoveBadMatches(Results);
+ std::sort(Results->match.begin(), Results->match.end(), SortDescendingRating);
+ RemoveExtraPuncs(Results);
+ Results->ComputeBest();
+ ConvertMatchesToChoices(Blob->denorm(), Blob->bounding_box(), Results,
+ Choices);
+
+ // TODO(rays) Move to before ConvertMatchesToChoices!
+ if (LargeSpeckle(*Blob) || Choices->length() == 0)
+ AddLargeSpeckleTo(Results->BlobLength, Choices);
+
+ if (matcher_debug_level >= 1) {
+ tprintf("AD Matches = ");
+ PrintAdaptiveMatchResults(*Results);
+ }
+
+#ifndef GRAPHICS_DISABLED
+ if (classify_enable_adaptive_debugger)
+ DebugAdaptiveClassifier(Blob, Results);
+#endif
+
+ delete Results;
+} /* AdaptiveClassifier */
+
+#ifndef GRAPHICS_DISABLED
+
+// If *win is nullptr, sets it to a new ScrollView() object with title msg.
+// Clears the window and draws baselines.
+void Classify::RefreshDebugWindow(ScrollView **win, const char *msg,
+ int y_offset, const TBOX &wbox) {
+ const int kSampleSpaceWidth = 500;
+ if (*win == nullptr) {
+ *win = new ScrollView(msg, 100, y_offset, kSampleSpaceWidth * 2, 200,
+ kSampleSpaceWidth * 2, 200, true);
+ }
+ (*win)->Clear();
+ (*win)->Pen(64, 64, 64);
+ (*win)->Line(-kSampleSpaceWidth, kBlnBaselineOffset,
+ kSampleSpaceWidth, kBlnBaselineOffset);
+ (*win)->Line(-kSampleSpaceWidth, kBlnXHeight + kBlnBaselineOffset,
+ kSampleSpaceWidth, kBlnXHeight + kBlnBaselineOffset);
+ (*win)->ZoomToRectangle(wbox.left(), wbox.top(),
+ wbox.right(), wbox.bottom());
+}
+
+#endif // !GRAPHICS_DISABLED
+
+// Learns the given word using its chopped_word, seam_array, denorm,
+// box_word, best_state, and correct_text to learn both correctly and
+// incorrectly segmented blobs. If fontname is not nullptr, then LearnBlob
+// is called and the data will be saved in an internal buffer.
+// Otherwise AdaptToBlob is called for adaption within a document.
+void Classify::LearnWord(const char* fontname, WERD_RES* word) {
+ int word_len = word->correct_text.size();
+ if (word_len == 0) return;
+
+ float* thresholds = nullptr;
+ if (fontname == nullptr) {
+ // Adaption mode.
+ if (!EnableLearning || word->best_choice == nullptr)
+ return; // Can't or won't adapt.
+
+ if (classify_learning_debug_level >= 1)
+ tprintf("\n\nAdapting to word = %s\n",
+ word->best_choice->debug_string().c_str());
+ thresholds = new float[word_len];
+ word->ComputeAdaptionThresholds(certainty_scale,
+ matcher_perfect_threshold,
+ matcher_good_threshold,
+ matcher_rating_margin, thresholds);
+ }
+ int start_blob = 0;
+
+ #ifndef GRAPHICS_DISABLED
+ if (classify_debug_character_fragments) {
+ if (learn_fragmented_word_debug_win_ != nullptr) {
+ learn_fragmented_word_debug_win_->Wait();
+ }
+ RefreshDebugWindow(&learn_fragments_debug_win_, "LearnPieces", 400,
+ word->chopped_word->bounding_box());
+ RefreshDebugWindow(&learn_fragmented_word_debug_win_, "LearnWord", 200,
+ word->chopped_word->bounding_box());
+ word->chopped_word->plot(learn_fragmented_word_debug_win_);
+ ScrollView::Update();
+ }
+ #endif // !GRAPHICS_DISABLED
+
+ for (int ch = 0; ch < word_len; ++ch) {
+ if (classify_debug_character_fragments) {
+ tprintf("\nLearning %s\n", word->correct_text[ch].c_str());
+ }
+ if (word->correct_text[ch].length() > 0) {
+ float threshold = thresholds != nullptr ? thresholds[ch] : 0.0f;
+
+ LearnPieces(fontname, start_blob, word->best_state[ch], threshold,
+ CST_WHOLE, word->correct_text[ch].c_str(), word);
+
+ if (word->best_state[ch] > 1 && !disable_character_fragments) {
+ // Check that the character breaks into meaningful fragments
+ // that each match a whole character with at least
+ // classify_character_fragments_garbage_certainty_threshold
+ bool garbage = false;
+ int frag;
+ for (frag = 0; frag < word->best_state[ch]; ++frag) {
+ TBLOB* frag_blob = word->chopped_word->blobs[start_blob + frag];
+ if (classify_character_fragments_garbage_certainty_threshold < 0) {
+ garbage |= LooksLikeGarbage(frag_blob);
+ }
+ }
+ // Learn the fragments.
+ if (!garbage) {
+ bool pieces_all_natural = word->PiecesAllNatural(start_blob,
+ word->best_state[ch]);
+ if (pieces_all_natural || !prioritize_division) {
+ for (frag = 0; frag < word->best_state[ch]; ++frag) {
+ std::vector<STRING> tokens;
+ word->correct_text[ch].split(' ', &tokens);
+
+ tokens[0] = CHAR_FRAGMENT::to_string(
+ tokens[0].c_str(), frag, word->best_state[ch],
+ pieces_all_natural);
+
+ STRING full_string;
+ for (int i = 0; i < tokens.size(); i++) {
+ full_string += tokens[i];
+ if (i != tokens.size() - 1)
+ full_string += ' ';
+ }
+ LearnPieces(fontname, start_blob + frag, 1, threshold,
+ CST_FRAGMENT, full_string.c_str(), word);
+ }
+ }
+ }
+ }
+
+ // TODO(rays): re-enable this part of the code when we switch to the
+ // new classifier that needs to see examples of garbage.
+ /*
+ if (word->best_state[ch] > 1) {
+ // If the next blob is good, make junk with the rightmost fragment.
+ if (ch + 1 < word_len && word->correct_text[ch + 1].length() > 0) {
+ LearnPieces(fontname, start_blob + word->best_state[ch] - 1,
+ word->best_state[ch + 1] + 1,
+ threshold, CST_IMPROPER, INVALID_UNICHAR, word);
+ }
+ // If the previous blob is good, make junk with the leftmost fragment.
+ if (ch > 0 && word->correct_text[ch - 1].length() > 0) {
+ LearnPieces(fontname, start_blob - word->best_state[ch - 1],
+ word->best_state[ch - 1] + 1,
+ threshold, CST_IMPROPER, INVALID_UNICHAR, word);
+ }
+ }
+ // If the next blob is good, make a join with it.
+ if (ch + 1 < word_len && word->correct_text[ch + 1].length() > 0) {
+ STRING joined_text = word->correct_text[ch];
+ joined_text += word->correct_text[ch + 1];
+ LearnPieces(fontname, start_blob,
+ word->best_state[ch] + word->best_state[ch + 1],
+ threshold, CST_NGRAM, joined_text.c_str(), word);
+ }
+ */
+ }
+ start_blob += word->best_state[ch];
+ }
+ delete [] thresholds;
+} // LearnWord.
+
+// Builds a blob of length fragments, from the word, starting at start,
+// and then learns it, as having the given correct_text.
+// If fontname is not nullptr, then LearnBlob is called and the data will be
+// saved in an internal buffer for static training.
+// Otherwise AdaptToBlob is called for adaption within a document.
+// threshold is a magic number required by AdaptToChar and generated by
+// ComputeAdaptionThresholds.
+// Although it can be partly inferred from the string, segmentation is
+// provided to explicitly clarify the character segmentation.
+void Classify::LearnPieces(const char* fontname, int start, int length,
+ float threshold, CharSegmentationType segmentation,
+ const char* correct_text, WERD_RES* word) {
+ // TODO(daria) Remove/modify this if/when we want
+ // to train and/or adapt to n-grams.
+ if (segmentation != CST_WHOLE &&
+ (segmentation != CST_FRAGMENT || disable_character_fragments))
+ return;
+
+ if (length > 1) {
+ SEAM::JoinPieces(word->seam_array, word->chopped_word->blobs, start,
+ start + length - 1);
+ }
+ TBLOB* blob = word->chopped_word->blobs[start];
+ // Rotate the blob if needed for classification.
+ TBLOB* rotated_blob = blob->ClassifyNormalizeIfNeeded();
+ if (rotated_blob == nullptr)
+ rotated_blob = blob;
+
+ #ifndef GRAPHICS_DISABLED
+ // Draw debug windows showing the blob that is being learned if needed.
+ if (strcmp(classify_learn_debug_str.c_str(), correct_text) == 0) {
+ RefreshDebugWindow(&learn_debug_win_, "LearnPieces", 600,
+ word->chopped_word->bounding_box());
+ rotated_blob->plot(learn_debug_win_, ScrollView::GREEN, ScrollView::BROWN);
+ learn_debug_win_->Update();
+ learn_debug_win_->Wait();
+ }
+ if (classify_debug_character_fragments && segmentation == CST_FRAGMENT) {
+ ASSERT_HOST(learn_fragments_debug_win_ != nullptr); // set up in LearnWord
+ blob->plot(learn_fragments_debug_win_,
+ ScrollView::BLUE, ScrollView::BROWN);
+ learn_fragments_debug_win_->Update();
+ }
+ #endif // !GRAPHICS_DISABLED
+
+ if (fontname != nullptr) {
+ classify_norm_method.set_value(character); // force char norm spc 30/11/93
+ tess_bn_matching.set_value(false); // turn it off
+ tess_cn_matching.set_value(false);
+ DENORM bl_denorm, cn_denorm;
+ INT_FX_RESULT_STRUCT fx_info;
+ SetupBLCNDenorms(*rotated_blob, classify_nonlinear_norm,
+ &bl_denorm, &cn_denorm, &fx_info);
+ LearnBlob(fontname, rotated_blob, cn_denorm, fx_info, correct_text);
+ } else if (unicharset.contains_unichar(correct_text)) {
+ UNICHAR_ID class_id = unicharset.unichar_to_id(correct_text);
+ int font_id = word->fontinfo != nullptr
+ ? fontinfo_table_.get_id(*word->fontinfo)
+ : 0;
+ if (classify_learning_debug_level >= 1)
+ tprintf("Adapting to char = %s, thr= %g font_id= %d\n",
+ unicharset.id_to_unichar(class_id), threshold, font_id);
+ // If filename is not nullptr we are doing recognition
+ // (as opposed to training), so we must have already set word fonts.
+ AdaptToChar(rotated_blob, class_id, font_id, threshold, AdaptedTemplates);
+ if (BackupAdaptedTemplates != nullptr) {
+ // Adapt the backup templates too. They will be used if the primary gets
+ // too full.
+ AdaptToChar(rotated_blob, class_id, font_id, threshold,
+ BackupAdaptedTemplates);
+ }
+ } else if (classify_debug_level >= 1) {
+ tprintf("Can't adapt to %s not in unicharset\n", correct_text);
+ }
+ if (rotated_blob != blob) {
+ delete rotated_blob;
+ }
+
+ SEAM::BreakPieces(word->seam_array, word->chopped_word->blobs, start,
+ start + length - 1);
+} // LearnPieces.
+
+/*---------------------------------------------------------------------------*/
+/**
+ * This routine performs cleanup operations
+ * on the adaptive classifier. It should be called
+ * before the program is terminated. Its main function
+ * is to save the adapted templates to a file.
+ *
+ * Globals:
+ * - #AdaptedTemplates current set of adapted templates
+ * - #classify_save_adapted_templates true if templates should be saved
+ * - #classify_enable_adaptive_matcher true if adaptive matcher is enabled
+ */
+void Classify::EndAdaptiveClassifier() {
+ STRING Filename;
+ FILE *File;
+
+ if (AdaptedTemplates != nullptr &&
+ classify_enable_adaptive_matcher && classify_save_adapted_templates) {
+ Filename = imagefile + ADAPT_TEMPLATE_SUFFIX;
+ File = fopen (Filename.c_str(), "wb");
+ if (File == nullptr)
+ tprintf ("Unable to save adapted templates to %s!\n", Filename.c_str());
+ else {
+ tprintf ("\nSaving adapted templates to %s ...", Filename.c_str());
+ fflush(stdout);
+ WriteAdaptedTemplates(File, AdaptedTemplates);
+ tprintf ("\n");
+ fclose(File);
+ }
+ }
+
+ if (AdaptedTemplates != nullptr) {
+ free_adapted_templates(AdaptedTemplates);
+ AdaptedTemplates = nullptr;
+ }
+ if (BackupAdaptedTemplates != nullptr) {
+ free_adapted_templates(BackupAdaptedTemplates);
+ BackupAdaptedTemplates = nullptr;
+ }
+
+ if (PreTrainedTemplates != nullptr) {
+ free_int_templates(PreTrainedTemplates);
+ PreTrainedTemplates = nullptr;
+ }
+ getDict().EndDangerousAmbigs();
+ FreeNormProtos();
+ if (AllProtosOn != nullptr) {
+ FreeBitVector(AllProtosOn);
+ FreeBitVector(AllConfigsOn);
+ FreeBitVector(AllConfigsOff);
+ FreeBitVector(TempProtoMask);
+ AllProtosOn = nullptr;
+ AllConfigsOn = nullptr;
+ AllConfigsOff = nullptr;
+ TempProtoMask = nullptr;
+ }
+ delete shape_table_;
+ shape_table_ = nullptr;
+ delete static_classifier_;
+ static_classifier_ = nullptr;
+} /* EndAdaptiveClassifier */
+
+
+/*---------------------------------------------------------------------------*/
+/**
+ * This routine reads in the training
+ * information needed by the adaptive classifier
+ * and saves it into global variables.
+ * Parameters:
+ * load_pre_trained_templates Indicates whether the pre-trained
+ * templates (inttemp, normproto and pffmtable components)
+ * should be loaded. Should only be set to true if the
+ * necessary classifier components are present in the
+ * [lang].traineddata file.
+ * Globals:
+ * BuiltInTemplatesFile file to get built-in temps from
+ * BuiltInCutoffsFile file to get avg. feat per class from
+ * classify_use_pre_adapted_templates
+ * enables use of pre-adapted templates
+ */
+void Classify::InitAdaptiveClassifier(TessdataManager* mgr) {
+ if (!classify_enable_adaptive_matcher)
+ return;
+ if (AllProtosOn != nullptr)
+ EndAdaptiveClassifier(); // Don't leak with multiple inits.
+
+ // If there is no language_data_path_prefix, the classifier will be
+ // adaptive only.
+ if (language_data_path_prefix.length() > 0 && mgr != nullptr) {
+ TFile fp;
+ ASSERT_HOST(mgr->GetComponent(TESSDATA_INTTEMP, &fp));
+ PreTrainedTemplates = ReadIntTemplates(&fp);
+
+ if (mgr->GetComponent(TESSDATA_SHAPE_TABLE, &fp)) {
+ shape_table_ = new ShapeTable(unicharset);
+ if (!shape_table_->DeSerialize(&fp)) {
+ tprintf("Error loading shape table!\n");
+ delete shape_table_;
+ shape_table_ = nullptr;
+ }
+ }
+
+ ASSERT_HOST(mgr->GetComponent(TESSDATA_PFFMTABLE, &fp));
+ ReadNewCutoffs(&fp, CharNormCutoffs);
+
+ ASSERT_HOST(mgr->GetComponent(TESSDATA_NORMPROTO, &fp));
+ NormProtos = ReadNormProtos(&fp);
+ static_classifier_ = new TessClassifier(false, this);
+ }
+
+ InitIntegerFX();
+
+ AllProtosOn = NewBitVector(MAX_NUM_PROTOS);
+ AllConfigsOn = NewBitVector(MAX_NUM_CONFIGS);
+ AllConfigsOff = NewBitVector(MAX_NUM_CONFIGS);
+ TempProtoMask = NewBitVector(MAX_NUM_PROTOS);
+ set_all_bits(AllProtosOn, WordsInVectorOfSize(MAX_NUM_PROTOS));
+ set_all_bits(AllConfigsOn, WordsInVectorOfSize(MAX_NUM_CONFIGS));
+ zero_all_bits(AllConfigsOff, WordsInVectorOfSize(MAX_NUM_CONFIGS));
+
+ for (uint16_t& BaselineCutoff : BaselineCutoffs) {
+ BaselineCutoff = 0;
+ }
+
+ if (classify_use_pre_adapted_templates) {
+ TFile fp;
+ STRING Filename;
+
+ Filename = imagefile;
+ Filename += ADAPT_TEMPLATE_SUFFIX;
+ if (!fp.Open(Filename.c_str(), nullptr)) {
+ AdaptedTemplates = NewAdaptedTemplates(true);
+ } else {
+ tprintf("\nReading pre-adapted templates from %s ...\n",
+ Filename.c_str());
+ fflush(stdout);
+ AdaptedTemplates = ReadAdaptedTemplates(&fp);
+ tprintf("\n");
+ PrintAdaptedTemplates(stdout, AdaptedTemplates);
+
+ for (int i = 0; i < AdaptedTemplates->Templates->NumClasses; i++) {
+ BaselineCutoffs[i] = CharNormCutoffs[i];
+ }
+ }
+ } else {
+ if (AdaptedTemplates != nullptr)
+ free_adapted_templates(AdaptedTemplates);
+ AdaptedTemplates = NewAdaptedTemplates(true);
+ }
+} /* InitAdaptiveClassifier */
+
+void Classify::ResetAdaptiveClassifierInternal() {
+ if (classify_learning_debug_level > 0) {
+ tprintf("Resetting adaptive classifier (NumAdaptationsFailed=%d)\n",
+ NumAdaptationsFailed);
+ }
+ free_adapted_templates(AdaptedTemplates);
+ AdaptedTemplates = NewAdaptedTemplates(true);
+ if (BackupAdaptedTemplates != nullptr)
+ free_adapted_templates(BackupAdaptedTemplates);
+ BackupAdaptedTemplates = nullptr;
+ NumAdaptationsFailed = 0;
+}
+
+// If there are backup adapted templates, switches to those, otherwise resets
+// the main adaptive classifier (because it is full.)
+void Classify::SwitchAdaptiveClassifier() {
+ if (BackupAdaptedTemplates == nullptr) {
+ ResetAdaptiveClassifierInternal();
+ return;
+ }
+ if (classify_learning_debug_level > 0) {
+ tprintf("Switch to backup adaptive classifier (NumAdaptationsFailed=%d)\n",
+ NumAdaptationsFailed);
+ }
+ free_adapted_templates(AdaptedTemplates);
+ AdaptedTemplates = BackupAdaptedTemplates;
+ BackupAdaptedTemplates = nullptr;
+ NumAdaptationsFailed = 0;
+}
+
+// Resets the backup adaptive classifier to empty.
+void Classify::StartBackupAdaptiveClassifier() {
+ if (BackupAdaptedTemplates != nullptr)
+ free_adapted_templates(BackupAdaptedTemplates);
+ BackupAdaptedTemplates = NewAdaptedTemplates(true);
+}
+
+/*---------------------------------------------------------------------------*/
+/**
+ * This routine prepares the adaptive
+ * matcher for the start
+ * of the first pass. Learning is enabled (unless it
+ * is disabled for the whole program).
+ *
+ * @note this is somewhat redundant, it simply says that if learning is
+ * enabled then it will remain enabled on the first pass. If it is
+ * disabled, then it will remain disabled. This is only put here to
+ * make it very clear that learning is controlled directly by the global
+ * setting of EnableLearning.
+ *
+ * Globals:
+ * - #EnableLearning
+ * set to true by this routine
+ */
+void Classify::SettupPass1() {
+ EnableLearning = classify_enable_learning;
+
+ getDict().SettupStopperPass1();
+
+} /* SettupPass1 */
+
+
+/*---------------------------------------------------------------------------*/
+/**
+ * This routine prepares the adaptive
+ * matcher for the start of the second pass. Further
+ * learning is disabled.
+ *
+ * Globals:
+ * - #EnableLearning set to false by this routine
+ */
+void Classify::SettupPass2() {
+ EnableLearning = false;
+ getDict().SettupStopperPass2();
+
+} /* SettupPass2 */
+
+
+/*---------------------------------------------------------------------------*/
+/**
+ * This routine creates a new adapted
+ * class and uses Blob as the model for the first
+ * config in that class.
+ *
+ * @param Blob blob to model new class after
+ * @param ClassId id of the class to be initialized
+ * @param FontinfoId font information inferred from pre-trained templates
+ * @param Class adapted class to be initialized
+ * @param Templates adapted templates to add new class to
+ *
+ * Globals:
+ * - #AllProtosOn dummy mask with all 1's
+ * - BaselineCutoffs kludge needed to get cutoffs
+ * - #PreTrainedTemplates kludge needed to get cutoffs
+ */
+void Classify::InitAdaptedClass(TBLOB *Blob,
+ CLASS_ID ClassId,
+ int FontinfoId,
+ ADAPT_CLASS Class,
+ ADAPT_TEMPLATES Templates) {
+ FEATURE_SET Features;
+ int Fid, Pid;
+ FEATURE Feature;
+ int NumFeatures;
+ TEMP_PROTO TempProto;
+ PROTO Proto;
+ INT_CLASS IClass;
+ TEMP_CONFIG Config;
+
+ classify_norm_method.set_value(baseline);
+ Features = ExtractOutlineFeatures(Blob);
+ NumFeatures = Features->NumFeatures;
+ if (NumFeatures > UNLIKELY_NUM_FEAT || NumFeatures <= 0) {
+ FreeFeatureSet(Features);
+ return;
+ }
+
+ Config = NewTempConfig(NumFeatures - 1, FontinfoId);
+ TempConfigFor(Class, 0) = Config;
+
+ /* this is a kludge to construct cutoffs for adapted templates */
+ if (Templates == AdaptedTemplates)
+ BaselineCutoffs[ClassId] = CharNormCutoffs[ClassId];
+
+ IClass = ClassForClassId (Templates->Templates, ClassId);
+
+ for (Fid = 0; Fid < Features->NumFeatures; Fid++) {
+ Pid = AddIntProto (IClass);
+ assert (Pid != NO_PROTO);
+
+ Feature = Features->Features[Fid];
+ TempProto = NewTempProto ();
+ Proto = &(TempProto->Proto);
+
+ /* compute proto params - NOTE that Y_DIM_OFFSET must be used because
+ ConvertProto assumes that the Y dimension varies from -0.5 to 0.5
+ instead of the -0.25 to 0.75 used in baseline normalization */
+ Proto->Angle = Feature->Params[OutlineFeatDir];
+ Proto->X = Feature->Params[OutlineFeatX];
+ Proto->Y = Feature->Params[OutlineFeatY] - Y_DIM_OFFSET;
+ Proto->Length = Feature->Params[OutlineFeatLength];
+ FillABC(Proto);
+
+ TempProto->ProtoId = Pid;
+ SET_BIT (Config->Protos, Pid);
+
+ ConvertProto(Proto, Pid, IClass);
+ AddProtoToProtoPruner(Proto, Pid, IClass,
+ classify_learning_debug_level >= 2);
+
+ Class->TempProtos = push (Class->TempProtos, TempProto);
+ }
+ FreeFeatureSet(Features);
+
+ AddIntConfig(IClass);
+ ConvertConfig (AllProtosOn, 0, IClass);
+
+ if (classify_learning_debug_level >= 1) {
+ tprintf("Added new class '%s' with class id %d and %d protos.\n",
+ unicharset.id_to_unichar(ClassId), ClassId, NumFeatures);
+#ifndef GRAPHICS_DISABLED
+ if (classify_learning_debug_level > 1)
+ DisplayAdaptedChar(Blob, IClass);
+#endif
+ }
+
+ if (IsEmptyAdaptedClass(Class))
+ (Templates->NumNonEmptyClasses)++;
+} /* InitAdaptedClass */
+
+
+/*---------------------------------------------------------------------------*/
+/**
+ * This routine sets up the feature
+ * extractor to extract baseline normalized
+ * pico-features.
+ *
+ * The extracted pico-features are converted
+ * to integer form and placed in IntFeatures. The
+ * original floating-pt. features are returned in
+ * FloatFeatures.
+ *
+ * Globals: none
+ * @param Blob blob to extract features from
+ * @param[out] IntFeatures array to fill with integer features
+ * @param[out] FloatFeatures place to return actual floating-pt features
+ *
+ * @return Number of pico-features returned (0 if
+ * an error occurred)
+ */
+int Classify::GetAdaptiveFeatures(TBLOB *Blob,
+ INT_FEATURE_ARRAY IntFeatures,
+ FEATURE_SET *FloatFeatures) {
+ FEATURE_SET Features;
+ int NumFeatures;
+
+ classify_norm_method.set_value(baseline);
+ Features = ExtractPicoFeatures(Blob);
+
+ NumFeatures = Features->NumFeatures;
+ if (NumFeatures == 0 || NumFeatures > UNLIKELY_NUM_FEAT) {
+ FreeFeatureSet(Features);
+ return 0;
+ }
+
+ ComputeIntFeatures(Features, IntFeatures);
+ *FloatFeatures = Features;
+
+ return NumFeatures;
+} /* GetAdaptiveFeatures */
+
+
+/*-----------------------------------------------------------------------------
+ Private Code
+-----------------------------------------------------------------------------*/
+/*---------------------------------------------------------------------------*/
+/**
+ * Return true if the specified word is acceptable for adaptation.
+ *
+ * Globals: none
+ *
+ * @param word current word
+ *
+ * @return true or false
+ */
+bool Classify::AdaptableWord(WERD_RES* word) {
+ if (word->best_choice == nullptr) return false;
+ int BestChoiceLength = word->best_choice->length();
+ float adaptable_score =
+ getDict().segment_penalty_dict_case_ok + ADAPTABLE_WERD_ADJUSTMENT;
+ return // rules that apply in general - simplest to compute first
+ BestChoiceLength > 0 &&
+ BestChoiceLength == word->rebuild_word->NumBlobs() &&
+ BestChoiceLength <= MAX_ADAPTABLE_WERD_SIZE &&
+ // This basically ensures that the word is at least a dictionary match
+ // (freq word, user word, system dawg word, etc).
+ // Since all the other adjustments will make adjust factor higher
+ // than higher than adaptable_score=1.1+0.05=1.15
+ // Since these are other flags that ensure that the word is dict word,
+ // this check could be at times redundant.
+ word->best_choice->adjust_factor() <= adaptable_score &&
+ // Make sure that alternative choices are not dictionary words.
+ word->AlternativeChoiceAdjustmentsWorseThan(adaptable_score);
+}
+
+/*---------------------------------------------------------------------------*/
+/**
+ * @param Blob blob to add to templates for ClassId
+ * @param ClassId class to add blob to
+ * @param FontinfoId font information from pre-trained templates
+ * @param Threshold minimum match rating to existing template
+ * @param adaptive_templates current set of adapted templates
+ *
+ * Globals:
+ * - AllProtosOn dummy mask to match against all protos
+ * - AllConfigsOn dummy mask to match against all configs
+ */
+void Classify::AdaptToChar(TBLOB* Blob, CLASS_ID ClassId, int FontinfoId,
+ float Threshold,
+ ADAPT_TEMPLATES adaptive_templates) {
+ int NumFeatures;
+ INT_FEATURE_ARRAY IntFeatures;
+ UnicharRating int_result;
+ INT_CLASS IClass;
+ ADAPT_CLASS Class;
+ TEMP_CONFIG TempConfig;
+ FEATURE_SET FloatFeatures;
+ int NewTempConfigId;
+
+ if (!LegalClassId (ClassId))
+ return;
+
+ int_result.unichar_id = ClassId;
+ Class = adaptive_templates->Class[ClassId];
+ assert(Class != nullptr);
+ if (IsEmptyAdaptedClass(Class)) {
+ InitAdaptedClass(Blob, ClassId, FontinfoId, Class, adaptive_templates);
+ } else {
+ IClass = ClassForClassId(adaptive_templates->Templates, ClassId);
+
+ NumFeatures = GetAdaptiveFeatures(Blob, IntFeatures, &FloatFeatures);
+ if (NumFeatures <= 0) {
+ return; // Features already freed by GetAdaptiveFeatures.
+ }
+
+ // Only match configs with the matching font.
+ BIT_VECTOR MatchingFontConfigs = NewBitVector(MAX_NUM_PROTOS);
+ for (int cfg = 0; cfg < IClass->NumConfigs; ++cfg) {
+ if (GetFontinfoId(Class, cfg) == FontinfoId) {
+ SET_BIT(MatchingFontConfigs, cfg);
+ } else {
+ reset_bit(MatchingFontConfigs, cfg);
+ }
+ }
+ im_.Match(IClass, AllProtosOn, MatchingFontConfigs,
+ NumFeatures, IntFeatures,
+ &int_result, classify_adapt_feature_threshold,
+ NO_DEBUG, matcher_debug_separate_windows);
+ FreeBitVector(MatchingFontConfigs);
+
+ SetAdaptiveThreshold(Threshold);
+
+ if (1.0f - int_result.rating <= Threshold) {
+ if (ConfigIsPermanent(Class, int_result.config)) {
+ if (classify_learning_debug_level >= 1)
+ tprintf("Found good match to perm config %d = %4.1f%%.\n",
+ int_result.config, int_result.rating * 100.0);
+ FreeFeatureSet(FloatFeatures);
+ return;
+ }
+
+ TempConfig = TempConfigFor(Class, int_result.config);
+ IncreaseConfidence(TempConfig);
+ if (TempConfig->NumTimesSeen > Class->MaxNumTimesSeen) {
+ Class->MaxNumTimesSeen = TempConfig->NumTimesSeen;
+ }
+ if (classify_learning_debug_level >= 1)
+ tprintf("Increasing reliability of temp config %d to %d.\n",
+ int_result.config, TempConfig->NumTimesSeen);
+
+ if (TempConfigReliable(ClassId, TempConfig)) {
+ MakePermanent(adaptive_templates, ClassId, int_result.config, Blob);
+ UpdateAmbigsGroup(ClassId, Blob);
+ }
+ } else {
+ if (classify_learning_debug_level >= 1) {
+ tprintf("Found poor match to temp config %d = %4.1f%%.\n",
+ int_result.config, int_result.rating * 100.0);
+#ifndef GRAPHICS_DISABLED
+ if (classify_learning_debug_level > 2)
+ DisplayAdaptedChar(Blob, IClass);
+#endif
+ }
+ NewTempConfigId =
+ MakeNewTemporaryConfig(adaptive_templates, ClassId, FontinfoId,
+ NumFeatures, IntFeatures, FloatFeatures);
+ if (NewTempConfigId >= 0 &&
+ TempConfigReliable(ClassId, TempConfigFor(Class, NewTempConfigId))) {
+ MakePermanent(adaptive_templates, ClassId, NewTempConfigId, Blob);
+ UpdateAmbigsGroup(ClassId, Blob);
+ }
+
+#ifndef GRAPHICS_DISABLED
+ if (classify_learning_debug_level > 1) {
+ DisplayAdaptedChar(Blob, IClass);
+ }
+#endif
+ }
+ FreeFeatureSet(FloatFeatures);
+ }
+} /* AdaptToChar */
+
+#ifndef GRAPHICS_DISABLED
+
+void Classify::DisplayAdaptedChar(TBLOB* blob, INT_CLASS_STRUCT* int_class) {
+ INT_FX_RESULT_STRUCT fx_info;
+ std::vector<INT_FEATURE_STRUCT> bl_features;
+ TrainingSample* sample =
+ BlobToTrainingSample(*blob, classify_nonlinear_norm, &fx_info,
+ &bl_features);
+ if (sample == nullptr) return;
+
+ UnicharRating int_result;
+ im_.Match(int_class, AllProtosOn, AllConfigsOn,
+ bl_features.size(), &bl_features[0],
+ &int_result, classify_adapt_feature_threshold,
+ NO_DEBUG, matcher_debug_separate_windows);
+ tprintf("Best match to temp config %d = %4.1f%%.\n",
+ int_result.config, int_result.rating * 100.0);
+ if (classify_learning_debug_level >= 2) {
+ uint32_t ConfigMask;
+ ConfigMask = 1 << int_result.config;
+ ShowMatchDisplay();
+ im_.Match(int_class, AllProtosOn, static_cast<BIT_VECTOR>(&ConfigMask),
+ bl_features.size(), &bl_features[0],
+ &int_result, classify_adapt_feature_threshold,
+ 6 | 0x19, matcher_debug_separate_windows);
+ UpdateMatchDisplay();
+ }
+
+ delete sample;
+}
+
+#endif
+
+/**
+ * This routine adds the result of a classification into
+ * Results. If the new rating is much worse than the current
+ * best rating, it is not entered into results because it
+ * would end up being stripped later anyway. If the new rating
+ * is better than the old rating for the class, it replaces the
+ * old rating. If this is the first rating for the class, the
+ * class is added to the list of matched classes in Results.
+ * If the new rating is better than the best so far, it
+ * becomes the best so far.
+ *
+ * Globals:
+ * - #matcher_bad_match_pad defines limits of an acceptable match
+ *
+ * @param new_result new result to add
+ * @param[out] results results to add new result to
+ */
+void Classify::AddNewResult(const UnicharRating& new_result,
+ ADAPT_RESULTS *results) {
+ int old_match = FindScoredUnichar(new_result.unichar_id, *results);
+
+ if (new_result.rating + matcher_bad_match_pad < results->best_rating ||
+ (old_match < results->match.size() &&
+ new_result.rating <= results->match[old_match].rating))
+ return; // New one not good enough.
+
+ if (!unicharset.get_fragment(new_result.unichar_id))
+ results->HasNonfragment = true;
+
+ if (old_match < results->match.size()) {
+ results->match[old_match].rating = new_result.rating;
+ } else {
+ results->match.push_back(new_result);
+ }
+
+ if (new_result.rating > results->best_rating &&
+ // Ensure that fragments do not affect best rating, class and config.
+ // This is needed so that at least one non-fragmented character is
+ // always present in the results.
+ // TODO(daria): verify that this helps accuracy and does not
+ // hurt performance.
+ !unicharset.get_fragment(new_result.unichar_id)) {
+ results->best_match_index = old_match;
+ results->best_rating = new_result.rating;
+ results->best_unichar_id = new_result.unichar_id;
+ }
+} /* AddNewResult */
+
+
+/*---------------------------------------------------------------------------*/
+/**
+ * This routine is identical to CharNormClassifier()
+ * except that it does no class pruning. It simply matches
+ * the unknown blob against the classes listed in
+ * Ambiguities.
+ *
+ * Globals:
+ * - #AllProtosOn mask that enables all protos
+ * - #AllConfigsOn mask that enables all configs
+ *
+ * @param blob blob to be classified
+ * @param templates built-in templates to classify against
+ * @param classes adapted class templates
+ * @param ambiguities array of unichar id's to match against
+ * @param[out] results place to put match results
+ * @param int_features
+ * @param fx_info
+ */
+void Classify::AmbigClassifier(
+ const std::vector<INT_FEATURE_STRUCT>& int_features,
+ const INT_FX_RESULT_STRUCT& fx_info,
+ const TBLOB *blob,
+ INT_TEMPLATES templates,
+ ADAPT_CLASS *classes,
+ UNICHAR_ID *ambiguities,
+ ADAPT_RESULTS *results) {
+ if (int_features.empty()) return;
+ auto* CharNormArray = new uint8_t[unicharset.size()];
+ UnicharRating int_result;
+
+ results->BlobLength = GetCharNormFeature(fx_info, templates, nullptr,
+ CharNormArray);
+ bool debug = matcher_debug_level >= 2 || classify_debug_level > 1;
+ if (debug)
+ tprintf("AM Matches = ");
+
+ int top = blob->bounding_box().top();
+ int bottom = blob->bounding_box().bottom();
+ while (*ambiguities >= 0) {
+ CLASS_ID class_id = *ambiguities;
+
+ int_result.unichar_id = class_id;
+ im_.Match(ClassForClassId(templates, class_id),
+ AllProtosOn, AllConfigsOn,
+ int_features.size(), &int_features[0],
+ &int_result,
+ classify_adapt_feature_threshold, NO_DEBUG,
+ matcher_debug_separate_windows);
+
+ ExpandShapesAndApplyCorrections(nullptr, debug, class_id, bottom, top, 0,
+ results->BlobLength,
+ classify_integer_matcher_multiplier,
+ CharNormArray, &int_result, results);
+ ambiguities++;
+ }
+ delete [] CharNormArray;
+} /* AmbigClassifier */
+
+/*---------------------------------------------------------------------------*/
+/// Factored-out calls to IntegerMatcher based on class pruner results.
+/// Returns integer matcher results inside CLASS_PRUNER_RESULTS structure.
+void Classify::MasterMatcher(INT_TEMPLATES templates,
+ int16_t num_features,
+ const INT_FEATURE_STRUCT* features,
+ const uint8_t* norm_factors,
+ ADAPT_CLASS* classes,
+ int debug,
+ int matcher_multiplier,
+ const TBOX& blob_box,
+ const std::vector<CP_RESULT_STRUCT>& results,
+ ADAPT_RESULTS* final_results) {
+ int top = blob_box.top();
+ int bottom = blob_box.bottom();
+ UnicharRating int_result;
+ for (int c = 0; c < results.size(); c++) {
+ CLASS_ID class_id = results[c].Class;
+ BIT_VECTOR protos = classes != nullptr ? classes[class_id]->PermProtos
+ : AllProtosOn;
+ BIT_VECTOR configs = classes != nullptr ? classes[class_id]->PermConfigs
+ : AllConfigsOn;
+
+ int_result.unichar_id = class_id;
+ im_.Match(ClassForClassId(templates, class_id),
+ protos, configs,
+ num_features, features,
+ &int_result, classify_adapt_feature_threshold, debug,
+ matcher_debug_separate_windows);
+ bool is_debug = matcher_debug_level >= 2 || classify_debug_level > 1;
+ ExpandShapesAndApplyCorrections(classes, is_debug, class_id, bottom, top,
+ results[c].Rating,
+ final_results->BlobLength,
+ matcher_multiplier, norm_factors,
+ &int_result, final_results);
+ }
+}
+
+// Converts configs to fonts, and if the result is not adapted, and a
+// shape_table_ is present, the shape is expanded to include all
+// unichar_ids represented, before applying a set of corrections to the
+// distance rating in int_result, (see ComputeCorrectedRating.)
+// The results are added to the final_results output.
+void Classify::ExpandShapesAndApplyCorrections(
+ ADAPT_CLASS* classes, bool debug, int class_id, int bottom, int top,
+ float cp_rating, int blob_length, int matcher_multiplier,
+ const uint8_t* cn_factors,
+ UnicharRating* int_result, ADAPT_RESULTS* final_results) {
+ if (classes != nullptr) {
+ // Adapted result. Convert configs to fontinfo_ids.
+ int_result->adapted = true;
+ for (int f = 0; f < int_result->fonts.size(); ++f) {
+ int_result->fonts[f].fontinfo_id =
+ GetFontinfoId(classes[class_id], int_result->fonts[f].fontinfo_id);
+ }
+ } else {
+ // Pre-trained result. Map fonts using font_sets_.
+ int_result->adapted = false;
+ for (int f = 0; f < int_result->fonts.size(); ++f) {
+ int_result->fonts[f].fontinfo_id =
+ ClassAndConfigIDToFontOrShapeID(class_id,
+ int_result->fonts[f].fontinfo_id);
+ }
+ if (shape_table_ != nullptr) {
+ // Two possible cases:
+ // 1. Flat shapetable. All unichar-ids of the shapes referenced by
+ // int_result->fonts are the same. In this case build a new vector of
+ // mapped fonts and replace the fonts in int_result.
+ // 2. Multi-unichar shapetable. Variable unichars in the shapes referenced
+ // by int_result. In this case, build a vector of UnicharRating to
+ // gather together different font-ids for each unichar. Also covers case1.
+ GenericVector<UnicharRating> mapped_results;
+ for (int f = 0; f < int_result->fonts.size(); ++f) {
+ int shape_id = int_result->fonts[f].fontinfo_id;
+ const Shape& shape = shape_table_->GetShape(shape_id);
+ for (int c = 0; c < shape.size(); ++c) {
+ int unichar_id = shape[c].unichar_id;
+ if (!unicharset.get_enabled(unichar_id)) continue;
+ // Find the mapped_result for unichar_id.
+ int r = 0;
+ for (r = 0; r < mapped_results.size() &&
+ mapped_results[r].unichar_id != unichar_id; ++r) {}
+ if (r == mapped_results.size()) {
+ mapped_results.push_back(*int_result);
+ mapped_results[r].unichar_id = unichar_id;
+ mapped_results[r].fonts.clear();
+ }
+ for (int i = 0; i < shape[c].font_ids.size(); ++i) {
+ mapped_results[r].fonts.push_back(
+ ScoredFont(shape[c].font_ids[i], int_result->fonts[f].score));
+ }
+ }
+ }
+ for (int m = 0; m < mapped_results.size(); ++m) {
+ mapped_results[m].rating =
+ ComputeCorrectedRating(debug, mapped_results[m].unichar_id,
+ cp_rating, int_result->rating,
+ int_result->feature_misses, bottom, top,
+ blob_length, matcher_multiplier, cn_factors);
+ AddNewResult(mapped_results[m], final_results);
+ }
+ return;
+ }
+ }
+ if (unicharset.get_enabled(class_id)) {
+ int_result->rating = ComputeCorrectedRating(debug, class_id, cp_rating,
+ int_result->rating,
+ int_result->feature_misses,
+ bottom, top, blob_length,
+ matcher_multiplier, cn_factors);
+ AddNewResult(*int_result, final_results);
+ }
+}
+
+// Applies a set of corrections to the confidence im_rating,
+// including the cn_correction, miss penalty and additional penalty
+// for non-alnums being vertical misfits. Returns the corrected confidence.
+double Classify::ComputeCorrectedRating(bool debug, int unichar_id,
+ double cp_rating, double im_rating,
+ int feature_misses,
+ int bottom, int top,
+ int blob_length, int matcher_multiplier,
+ const uint8_t* cn_factors) {
+ // Compute class feature corrections.
+ double cn_corrected = im_.ApplyCNCorrection(1.0 - im_rating, blob_length,
+ cn_factors[unichar_id],
+ matcher_multiplier);
+ double miss_penalty = tessedit_class_miss_scale * feature_misses;
+ double vertical_penalty = 0.0;
+ // Penalize non-alnums for being vertical misfits.
+ if (!unicharset.get_isalpha(unichar_id) &&
+ !unicharset.get_isdigit(unichar_id) &&
+ cn_factors[unichar_id] != 0 && classify_misfit_junk_penalty > 0.0) {
+ int min_bottom, max_bottom, min_top, max_top;
+ unicharset.get_top_bottom(unichar_id, &min_bottom, &max_bottom,
+ &min_top, &max_top);
+ if (debug) {
+ tprintf("top=%d, vs [%d, %d], bottom=%d, vs [%d, %d]\n",
+ top, min_top, max_top, bottom, min_bottom, max_bottom);
+ }
+ if (top < min_top || top > max_top ||
+ bottom < min_bottom || bottom > max_bottom) {
+ vertical_penalty = classify_misfit_junk_penalty;
+ }
+ }
+ double result = 1.0 - (cn_corrected + miss_penalty + vertical_penalty);
+ if (result < WORST_POSSIBLE_RATING)
+ result = WORST_POSSIBLE_RATING;
+ if (debug) {
+ tprintf("%s: %2.1f%%(CP%2.1f, IM%2.1f + CN%.2f(%d) + MP%2.1f + VP%2.1f)\n",
+ unicharset.id_to_unichar(unichar_id),
+ result * 100.0,
+ cp_rating * 100.0,
+ (1.0 - im_rating) * 100.0,
+ (cn_corrected - (1.0 - im_rating)) * 100.0,
+ cn_factors[unichar_id],
+ miss_penalty * 100.0,
+ vertical_penalty * 100.0);
+ }
+ return result;
+}
+
+/*---------------------------------------------------------------------------*/
+/**
+ * This routine extracts baseline normalized features
+ * from the unknown character and matches them against the
+ * specified set of templates. The classes which match
+ * are added to Results.
+ *
+ * Globals:
+ * - BaselineCutoffs expected num features for each class
+ *
+ * @param Blob blob to be classified
+ * @param Templates current set of adapted templates
+ * @param Results place to put match results
+ * @param int_features
+ * @param fx_info
+ *
+ * @return Array of possible ambiguous chars that should be checked.
+ */
+UNICHAR_ID *Classify::BaselineClassifier(
+ TBLOB *Blob, const std::vector<INT_FEATURE_STRUCT>& int_features,
+ const INT_FX_RESULT_STRUCT& fx_info,
+ ADAPT_TEMPLATES Templates, ADAPT_RESULTS *Results) {
+ if (int_features.empty()) return nullptr;
+ auto* CharNormArray = new uint8_t[unicharset.size()];
+ ClearCharNormArray(CharNormArray);
+
+ Results->BlobLength = IntCastRounded(fx_info.Length / kStandardFeatureLength);
+ PruneClasses(Templates->Templates, int_features.size(), -1, &int_features[0],
+ CharNormArray, BaselineCutoffs, &Results->CPResults);
+
+ if (matcher_debug_level >= 2 || classify_debug_level > 1)
+ tprintf("BL Matches = ");
+
+ MasterMatcher(Templates->Templates, int_features.size(), &int_features[0],
+ CharNormArray,
+ Templates->Class, matcher_debug_flags, 0,
+ Blob->bounding_box(), Results->CPResults, Results);
+
+ delete [] CharNormArray;
+ CLASS_ID ClassId = Results->best_unichar_id;
+ if (ClassId == INVALID_UNICHAR_ID || Results->best_match_index < 0)
+ return nullptr;
+
+ return Templates->Class[ClassId]->
+ Config[Results->match[Results->best_match_index].config].Perm->Ambigs;
+} /* BaselineClassifier */
+
+
+/*---------------------------------------------------------------------------*/
+/**
+ * This routine extracts character normalized features
+ * from the unknown character and matches them against the
+ * specified set of templates. The classes which match
+ * are added to Results.
+ *
+ * @param blob blob to be classified
+ * @param sample templates to classify unknown against
+ * @param adapt_results place to put match results
+ *
+ * Globals:
+ * - CharNormCutoffs expected num features for each class
+ * - AllProtosOn mask that enables all protos
+ * - AllConfigsOn mask that enables all configs
+ */
+int Classify::CharNormClassifier(TBLOB *blob,
+ const TrainingSample& sample,
+ ADAPT_RESULTS *adapt_results) {
+ // This is the length that is used for scaling ratings vs certainty.
+ adapt_results->BlobLength =
+ IntCastRounded(sample.outline_length() / kStandardFeatureLength);
+ std::vector<UnicharRating> unichar_results;
+ static_classifier_->UnicharClassifySample(sample, blob->denorm().pix(), 0,
+ -1, &unichar_results);
+ // Convert results to the format used internally by AdaptiveClassifier.
+ for (int r = 0; r < unichar_results.size(); ++r) {
+ AddNewResult(unichar_results[r], adapt_results);
+ }
+ return sample.num_features();
+} /* CharNormClassifier */
+
+// As CharNormClassifier, but operates on a TrainingSample and outputs to
+// a GenericVector of ShapeRating without conversion to classes.
+int Classify::CharNormTrainingSample(bool pruner_only,
+ int keep_this,
+ const TrainingSample& sample,
+ std::vector<UnicharRating>* results) {
+ results->clear();
+ auto* adapt_results = new ADAPT_RESULTS();
+ adapt_results->Initialize();
+ // Compute the bounding box of the features.
+ uint32_t num_features = sample.num_features();
+ // Only the top and bottom of the blob_box are used by MasterMatcher, so
+ // fabricate right and left using top and bottom.
+ TBOX blob_box(sample.geo_feature(GeoBottom), sample.geo_feature(GeoBottom),
+ sample.geo_feature(GeoTop), sample.geo_feature(GeoTop));
+ // Compute the char_norm_array from the saved cn_feature.
+ FEATURE norm_feature = sample.GetCNFeature();
+ auto* char_norm_array = new uint8_t[unicharset.size()];
+ int num_pruner_classes = std::max(unicharset.size(),
+ PreTrainedTemplates->NumClasses);
+ auto* pruner_norm_array = new uint8_t[num_pruner_classes];
+ adapt_results->BlobLength =
+ static_cast<int>(ActualOutlineLength(norm_feature) * 20 + 0.5);
+ ComputeCharNormArrays(norm_feature, PreTrainedTemplates, char_norm_array,
+ pruner_norm_array);
+
+ PruneClasses(PreTrainedTemplates, num_features, keep_this, sample.features(),
+ pruner_norm_array,
+ shape_table_ != nullptr ? &shapetable_cutoffs_[0] : CharNormCutoffs,
+ &adapt_results->CPResults);
+ delete [] pruner_norm_array;
+ if (keep_this >= 0) {
+ adapt_results->CPResults[0].Class = keep_this;
+ adapt_results->CPResults.resize(1);
+ }
+ if (pruner_only) {
+ // Convert pruner results to output format.
+ for (int i = 0; i < adapt_results->CPResults.size(); ++i) {
+ int class_id = adapt_results->CPResults[i].Class;
+ results->push_back(
+ UnicharRating(class_id, 1.0f - adapt_results->CPResults[i].Rating));
+ }
+ } else {
+ MasterMatcher(PreTrainedTemplates, num_features, sample.features(),
+ char_norm_array,
+ nullptr, matcher_debug_flags,
+ classify_integer_matcher_multiplier,
+ blob_box, adapt_results->CPResults, adapt_results);
+ // Convert master matcher results to output format.
+ for (int i = 0; i < adapt_results->match.size(); i++) {
+ results->push_back(adapt_results->match[i]);
+ }
+ if (results->size() > 1) {
+ std::sort(results->begin(), results->end(), SortDescendingRating);
+ }
+ }
+ delete [] char_norm_array;
+ delete adapt_results;
+ return num_features;
+} /* CharNormTrainingSample */
+
+
+/*---------------------------------------------------------------------------*/
+/**
+ * This routine computes a rating which reflects the
+ * likelihood that the blob being classified is a noise
+ * blob. NOTE: assumes that the blob length has already been
+ * computed and placed into Results.
+ *
+ * @param results results to add noise classification to
+ *
+ * Globals:
+ * - matcher_avg_noise_size avg. length of a noise blob
+ */
+void Classify::ClassifyAsNoise(ADAPT_RESULTS *results) {
+ float rating = results->BlobLength / matcher_avg_noise_size;
+ rating *= rating;
+ rating /= 1.0 + rating;
+
+ AddNewResult(UnicharRating(UNICHAR_SPACE, 1.0f - rating), results);
+} /* ClassifyAsNoise */
+
+/// The function converts the given match ratings to the list of blob
+/// choices with ratings and certainties (used by the context checkers).
+/// If character fragments are present in the results, this function also makes
+/// sure that there is at least one non-fragmented classification included.
+/// For each classification result check the unicharset for "definite"
+/// ambiguities and modify the resulting Choices accordingly.
+void Classify::ConvertMatchesToChoices(const DENORM& denorm, const TBOX& box,
+ ADAPT_RESULTS *Results,
+ BLOB_CHOICE_LIST *Choices) {
+ assert(Choices != nullptr);
+ float Rating;
+ float Certainty;
+ BLOB_CHOICE_IT temp_it;
+ bool contains_nonfrag = false;
+ temp_it.set_to_list(Choices);
+ int choices_length = 0;
+ // With no shape_table_ maintain the previous MAX_MATCHES as the maximum
+ // number of returned results, but with a shape_table_ we want to have room
+ // for at least the biggest shape (which might contain hundreds of Indic
+ // grapheme fragments) and more, so use double the size of the biggest shape
+ // if that is more than the default.
+ int max_matches = MAX_MATCHES;
+ if (shape_table_ != nullptr) {
+ max_matches = shape_table_->MaxNumUnichars() * 2;
+ if (max_matches < MAX_MATCHES)
+ max_matches = MAX_MATCHES;
+ }
+
+ float best_certainty = -FLT_MAX;
+ for (int i = 0; i < Results->match.size(); i++) {
+ const UnicharRating& result = Results->match[i];
+ bool adapted = result.adapted;
+ bool current_is_frag = (unicharset.get_fragment(result.unichar_id) != nullptr);
+ if (temp_it.length()+1 == max_matches &&
+ !contains_nonfrag && current_is_frag) {
+ continue; // look for a non-fragmented character to fill the
+ // last spot in Choices if only fragments are present
+ }
+ // BlobLength can never be legally 0, this means recognition failed.
+ // But we must return a classification result because some invoking
+ // functions (chopper/permuter) do not anticipate a null blob choice.
+ // So we need to assign a poor, but not infinitely bad score.
+ if (Results->BlobLength == 0) {
+ Certainty = -20;
+ Rating = 100; // should be -certainty * real_blob_length
+ } else {
+ Rating = Certainty = (1.0f - result.rating);
+ Rating *= rating_scale * Results->BlobLength;
+ Certainty *= -(getDict().certainty_scale);
+ }
+ // Adapted results, by their very nature, should have good certainty.
+ // Those that don't are at best misleading, and often lead to errors,
+ // so don't accept adapted results that are too far behind the best result,
+ // whether adapted or static.
+ // TODO(rays) find some way of automatically tuning these constants.
+ if (Certainty > best_certainty) {
+ best_certainty = std::min(Certainty, static_cast<float>(classify_adapted_pruning_threshold));
+ } else if (adapted &&
+ Certainty / classify_adapted_pruning_factor < best_certainty) {
+ continue; // Don't accept bad adapted results.
+ }
+
+ float min_xheight, max_xheight, yshift;
+ denorm.XHeightRange(result.unichar_id, unicharset, box,
+ &min_xheight, &max_xheight, &yshift);
+ auto* choice =
+ new BLOB_CHOICE(result.unichar_id, Rating, Certainty,
+ unicharset.get_script(result.unichar_id),
+ min_xheight, max_xheight, yshift,
+ adapted ? BCC_ADAPTED_CLASSIFIER
+ : BCC_STATIC_CLASSIFIER);
+ choice->set_fonts(result.fonts);
+ temp_it.add_to_end(choice);
+ contains_nonfrag |= !current_is_frag; // update contains_nonfrag
+ choices_length++;
+ if (choices_length >= max_matches) break;
+ }
+ Results->match.resize(choices_length);
+} // ConvertMatchesToChoices
+
+
+/*---------------------------------------------------------------------------*/
+#ifndef GRAPHICS_DISABLED
+/**
+ *
+ * @param blob blob whose classification is being debugged
+ * @param Results results of match being debugged
+ *
+ * Globals: none
+ */
+void Classify::DebugAdaptiveClassifier(TBLOB *blob,
+ ADAPT_RESULTS *Results) {
+ if (static_classifier_ == nullptr) return;
+ INT_FX_RESULT_STRUCT fx_info;
+ std::vector<INT_FEATURE_STRUCT> bl_features;
+ TrainingSample* sample =
+ BlobToTrainingSample(*blob, false, &fx_info, &bl_features);
+ if (sample == nullptr) return;
+ static_classifier_->DebugDisplay(*sample, blob->denorm().pix(),
+ Results->best_unichar_id);
+} /* DebugAdaptiveClassifier */
+#endif
+
+/*---------------------------------------------------------------------------*/
+/**
+ * This routine performs an adaptive classification.
+ * If we have not yet adapted to enough classes, a simple
+ * classification to the pre-trained templates is performed.
+ * Otherwise, we match the blob against the adapted templates.
+ * If the adapted templates do not match well, we try a
+ * match against the pre-trained templates. If an adapted
+ * template match is found, we do a match to any pre-trained
+ * templates which could be ambiguous. The results from all
+ * of these classifications are merged together into Results.
+ *
+ * @param Blob blob to be classified
+ * @param Results place to put match results
+ *
+ * Globals:
+ * - PreTrainedTemplates built-in training templates
+ * - AdaptedTemplates templates adapted for this page
+ * - matcher_reliable_adaptive_result rating limit for a great match
+ */
+void Classify::DoAdaptiveMatch(TBLOB *Blob, ADAPT_RESULTS *Results) {
+ UNICHAR_ID *Ambiguities;
+
+ INT_FX_RESULT_STRUCT fx_info;
+ std::vector<INT_FEATURE_STRUCT> bl_features;
+ TrainingSample* sample =
+ BlobToTrainingSample(*Blob, classify_nonlinear_norm, &fx_info,
+ &bl_features);
+ if (sample == nullptr) return;
+
+ // TODO: With LSTM, static_classifier_ is nullptr.
+ // Return to avoid crash in CharNormClassifier.
+ if (static_classifier_ == nullptr) {
+ delete sample;
+ return;
+ }
+
+ if (AdaptedTemplates->NumPermClasses < matcher_permanent_classes_min ||
+ tess_cn_matching) {
+ CharNormClassifier(Blob, *sample, Results);
+ } else {
+ Ambiguities = BaselineClassifier(Blob, bl_features, fx_info,
+ AdaptedTemplates, Results);
+ if ((!Results->match.empty() &&
+ MarginalMatch(Results->best_rating,
+ matcher_reliable_adaptive_result) &&
+ !tess_bn_matching) ||
+ Results->match.empty()) {
+ CharNormClassifier(Blob, *sample, Results);
+ } else if (Ambiguities && *Ambiguities >= 0 && !tess_bn_matching) {
+ AmbigClassifier(bl_features, fx_info, Blob,
+ PreTrainedTemplates,
+ AdaptedTemplates->Class,
+ Ambiguities,
+ Results);
+ }
+ }
+
+ // Force the blob to be classified as noise
+ // if the results contain only fragments.
+ // TODO(daria): verify that this is better than
+ // just adding a nullptr classification.
+ if (!Results->HasNonfragment || Results->match.empty())
+ ClassifyAsNoise(Results);
+ delete sample;
+} /* DoAdaptiveMatch */
+
+/*---------------------------------------------------------------------------*/
+/**
+ * This routine matches blob to the built-in templates
+ * to find out if there are any classes other than the correct
+ * class which are potential ambiguities.
+ *
+ * @param Blob blob to get classification ambiguities for
+ * @param CorrectClass correct class for Blob
+ *
+ * Globals:
+ * - CurrentRatings used by qsort compare routine
+ * - PreTrainedTemplates built-in templates
+ *
+ * @return String containing all possible ambiguous classes.
+ */
+UNICHAR_ID *Classify::GetAmbiguities(TBLOB *Blob,
+ CLASS_ID CorrectClass) {
+ auto *Results = new ADAPT_RESULTS();
+ UNICHAR_ID *Ambiguities;
+ int i;
+
+ Results->Initialize();
+ INT_FX_RESULT_STRUCT fx_info;
+ std::vector<INT_FEATURE_STRUCT> bl_features;
+ TrainingSample* sample =
+ BlobToTrainingSample(*Blob, classify_nonlinear_norm, &fx_info,
+ &bl_features);
+ if (sample == nullptr) {
+ delete Results;
+ return nullptr;
+ }
+
+ CharNormClassifier(Blob, *sample, Results);
+ delete sample;
+ RemoveBadMatches(Results);
+ std::sort(Results->match.begin(), Results->match.end(), SortDescendingRating);
+
+ /* copy the class id's into an string of ambiguities - don't copy if
+ the correct class is the only class id matched */
+ Ambiguities = new UNICHAR_ID[Results->match.size() + 1];
+ if (Results->match.size() > 1 ||
+ (Results->match.size() == 1 &&
+ Results->match[0].unichar_id != CorrectClass)) {
+ for (i = 0; i < Results->match.size(); i++)
+ Ambiguities[i] = Results->match[i].unichar_id;
+ Ambiguities[i] = -1;
+ } else {
+ Ambiguities[0] = -1;
+ }
+
+ delete Results;
+ return Ambiguities;
+} /* GetAmbiguities */
+
+// Returns true if the given blob looks too dissimilar to any character
+// present in the classifier templates.
+bool Classify::LooksLikeGarbage(TBLOB *blob) {
+ auto *ratings = new BLOB_CHOICE_LIST();
+ AdaptiveClassifier(blob, ratings);
+ BLOB_CHOICE_IT ratings_it(ratings);
+ const UNICHARSET &unicharset = getDict().getUnicharset();
+ if (classify_debug_character_fragments) {
+ print_ratings_list("======================\nLooksLikeGarbage() got ",
+ ratings, unicharset);
+ }
+ for (ratings_it.mark_cycle_pt(); !ratings_it.cycled_list();
+ ratings_it.forward()) {
+ if (unicharset.get_fragment(ratings_it.data()->unichar_id()) != nullptr) {
+ continue;
+ }
+ float certainty = ratings_it.data()->certainty();
+ delete ratings;
+ return certainty <
+ classify_character_fragments_garbage_certainty_threshold;
+ }
+ delete ratings;
+ return true; // no whole characters in ratings
+}
+
+/*---------------------------------------------------------------------------*/
+/**
+ * This routine calls the integer (Hardware) feature
+ * extractor if it has not been called before for this blob.
+ *
+ * The results from the feature extractor are placed into
+ * globals so that they can be used in other routines without
+ * re-extracting the features.
+ *
+ * It then copies the char norm features into the IntFeatures
+ * array provided by the caller.
+ *
+ * @param templates used to compute char norm adjustments
+ * @param pruner_norm_array Array of factors from blob normalization
+ * process
+ * @param char_norm_array array to fill with dummy char norm adjustments
+ * @param fx_info
+ *
+ * Globals:
+ *
+ * @return Number of features extracted or 0 if an error occurred.
+ */
+int Classify::GetCharNormFeature(const INT_FX_RESULT_STRUCT& fx_info,
+ INT_TEMPLATES templates,
+ uint8_t* pruner_norm_array,
+ uint8_t* char_norm_array) {
+ FEATURE norm_feature = NewFeature(&CharNormDesc);
+ float baseline = kBlnBaselineOffset;
+ float scale = MF_SCALE_FACTOR;
+ norm_feature->Params[CharNormY] = (fx_info.Ymean - baseline) * scale;
+ norm_feature->Params[CharNormLength] =
+ fx_info.Length * scale / LENGTH_COMPRESSION;
+ norm_feature->Params[CharNormRx] = fx_info.Rx * scale;
+ norm_feature->Params[CharNormRy] = fx_info.Ry * scale;
+ // Deletes norm_feature.
+ ComputeCharNormArrays(norm_feature, templates, char_norm_array,
+ pruner_norm_array);
+ return IntCastRounded(fx_info.Length / kStandardFeatureLength);
+} /* GetCharNormFeature */
+
+// Computes the char_norm_array for the unicharset and, if not nullptr, the
+// pruner_array as appropriate according to the existence of the shape_table.
+void Classify::ComputeCharNormArrays(FEATURE_STRUCT* norm_feature,
+ INT_TEMPLATES_STRUCT* templates,
+ uint8_t* char_norm_array,
+ uint8_t* pruner_array) {
+ ComputeIntCharNormArray(*norm_feature, char_norm_array);
+ if (pruner_array != nullptr) {
+ if (shape_table_ == nullptr) {
+ ComputeIntCharNormArray(*norm_feature, pruner_array);
+ } else {
+ memset(pruner_array, UINT8_MAX,
+ templates->NumClasses * sizeof(pruner_array[0]));
+ // Each entry in the pruner norm array is the MIN of all the entries of
+ // the corresponding unichars in the CharNormArray.
+ for (int id = 0; id < templates->NumClasses; ++id) {
+ int font_set_id = templates->Class[id]->font_set_id;
+ const FontSet &fs = fontset_table_.get(font_set_id);
+ for (int config = 0; config < fs.size; ++config) {
+ const Shape& shape = shape_table_->GetShape(fs.configs[config]);
+ for (int c = 0; c < shape.size(); ++c) {
+ if (char_norm_array[shape[c].unichar_id] < pruner_array[id])
+ pruner_array[id] = char_norm_array[shape[c].unichar_id];
+ }
+ }
+ }
+ }
+ }
+ FreeFeature(norm_feature);
+}
+
+/*---------------------------------------------------------------------------*/
+/**
+ *
+ * @param Templates adapted templates to add new config to
+ * @param ClassId class id to associate with new config
+ * @param FontinfoId font information inferred from pre-trained templates
+ * @param NumFeatures number of features in IntFeatures
+ * @param Features features describing model for new config
+ * @param FloatFeatures floating-pt representation of features
+ *
+ * @return The id of the new config created, a negative integer in
+ * case of error.
+ */
+int Classify::MakeNewTemporaryConfig(ADAPT_TEMPLATES Templates,
+ CLASS_ID ClassId,
+ int FontinfoId,
+ int NumFeatures,
+ INT_FEATURE_ARRAY Features,
+ FEATURE_SET FloatFeatures) {
+ INT_CLASS IClass;
+ ADAPT_CLASS Class;
+ PROTO_ID OldProtos[MAX_NUM_PROTOS];
+ FEATURE_ID BadFeatures[MAX_NUM_INT_FEATURES];
+ int NumOldProtos;
+ int NumBadFeatures;
+ int MaxProtoId, OldMaxProtoId;
+ int MaskSize;
+ int ConfigId;
+ TEMP_CONFIG Config;
+ int i;
+ int debug_level = NO_DEBUG;
+
+ if (classify_learning_debug_level >= 3)
+ debug_level =
+ PRINT_MATCH_SUMMARY | PRINT_FEATURE_MATCHES | PRINT_PROTO_MATCHES;
+
+ IClass = ClassForClassId(Templates->Templates, ClassId);
+ Class = Templates->Class[ClassId];
+
+ if (IClass->NumConfigs >= MAX_NUM_CONFIGS) {
+ ++NumAdaptationsFailed;
+ if (classify_learning_debug_level >= 1)
+ tprintf("Cannot make new temporary config: maximum number exceeded.\n");
+ return -1;
+ }
+
+ OldMaxProtoId = IClass->NumProtos - 1;
+
+ NumOldProtos = im_.FindGoodProtos(IClass, AllProtosOn, AllConfigsOff,
+ NumFeatures, Features,
+ OldProtos, classify_adapt_proto_threshold,
+ debug_level);
+
+ MaskSize = WordsInVectorOfSize(MAX_NUM_PROTOS);
+ zero_all_bits(TempProtoMask, MaskSize);
+ for (i = 0; i < NumOldProtos; i++)
+ SET_BIT(TempProtoMask, OldProtos[i]);
+
+ NumBadFeatures = im_.FindBadFeatures(IClass, TempProtoMask, AllConfigsOn,
+ NumFeatures, Features,
+ BadFeatures,
+ classify_adapt_feature_threshold,
+ debug_level);
+
+ MaxProtoId = MakeNewTempProtos(FloatFeatures, NumBadFeatures, BadFeatures,
+ IClass, Class, TempProtoMask);
+ if (MaxProtoId == NO_PROTO) {
+ ++NumAdaptationsFailed;
+ if (classify_learning_debug_level >= 1)
+ tprintf("Cannot make new temp protos: maximum number exceeded.\n");
+ return -1;
+ }
+
+ ConfigId = AddIntConfig(IClass);
+ ConvertConfig(TempProtoMask, ConfigId, IClass);
+ Config = NewTempConfig(MaxProtoId, FontinfoId);
+ TempConfigFor(Class, ConfigId) = Config;
+ copy_all_bits(TempProtoMask, Config->Protos, Config->ProtoVectorSize);
+
+ if (classify_learning_debug_level >= 1)
+ tprintf("Making new temp config %d fontinfo id %d"
+ " using %d old and %d new protos.\n",
+ ConfigId, Config->FontinfoId,
+ NumOldProtos, MaxProtoId - OldMaxProtoId);
+
+ return ConfigId;
+} /* MakeNewTemporaryConfig */
+
+/*---------------------------------------------------------------------------*/
+/**
+ * This routine finds sets of sequential bad features
+ * that all have the same angle and converts each set into
+ * a new temporary proto. The temp proto is added to the
+ * proto pruner for IClass, pushed onto the list of temp
+ * protos in Class, and added to TempProtoMask.
+ *
+ * @param Features floating-pt features describing new character
+ * @param NumBadFeat number of bad features to turn into protos
+ * @param BadFeat feature id's of bad features
+ * @param IClass integer class templates to add new protos to
+ * @param Class adapted class templates to add new protos to
+ * @param TempProtoMask proto mask to add new protos to
+ *
+ * Globals: none
+ *
+ * @return Max proto id in class after all protos have been added.
+ */
+PROTO_ID Classify::MakeNewTempProtos(FEATURE_SET Features,
+ int NumBadFeat,
+ FEATURE_ID BadFeat[],
+ INT_CLASS IClass,
+ ADAPT_CLASS Class,
+ BIT_VECTOR TempProtoMask) {
+ FEATURE_ID *ProtoStart;
+ FEATURE_ID *ProtoEnd;
+ FEATURE_ID *LastBad;
+ TEMP_PROTO TempProto;
+ PROTO Proto;
+ FEATURE F1, F2;
+ float X1, X2, Y1, Y2;
+ float A1, A2, AngleDelta;
+ float SegmentLength;
+ PROTO_ID Pid;
+
+ for (ProtoStart = BadFeat, LastBad = ProtoStart + NumBadFeat;
+ ProtoStart < LastBad; ProtoStart = ProtoEnd) {
+ F1 = Features->Features[*ProtoStart];
+ X1 = F1->Params[PicoFeatX];
+ Y1 = F1->Params[PicoFeatY];
+ A1 = F1->Params[PicoFeatDir];
+
+ for (ProtoEnd = ProtoStart + 1,
+ SegmentLength = GetPicoFeatureLength();
+ ProtoEnd < LastBad;
+ ProtoEnd++, SegmentLength += GetPicoFeatureLength()) {
+ F2 = Features->Features[*ProtoEnd];
+ X2 = F2->Params[PicoFeatX];
+ Y2 = F2->Params[PicoFeatY];
+ A2 = F2->Params[PicoFeatDir];
+
+ AngleDelta = fabs(A1 - A2);
+ if (AngleDelta > 0.5)
+ AngleDelta = 1.0 - AngleDelta;
+
+ if (AngleDelta > matcher_clustering_max_angle_delta ||
+ fabs(X1 - X2) > SegmentLength ||
+ fabs(Y1 - Y2) > SegmentLength)
+ break;
+ }
+
+ F2 = Features->Features[*(ProtoEnd - 1)];
+ X2 = F2->Params[PicoFeatX];
+ Y2 = F2->Params[PicoFeatY];
+ A2 = F2->Params[PicoFeatDir];
+
+ Pid = AddIntProto(IClass);
+ if (Pid == NO_PROTO)
+ return (NO_PROTO);
+
+ TempProto = NewTempProto();
+ Proto = &(TempProto->Proto);
+
+ /* compute proto params - NOTE that Y_DIM_OFFSET must be used because
+ ConvertProto assumes that the Y dimension varies from -0.5 to 0.5
+ instead of the -0.25 to 0.75 used in baseline normalization */
+ Proto->Length = SegmentLength;
+ Proto->Angle = A1;
+ Proto->X = (X1 + X2) / 2.0;
+ Proto->Y = (Y1 + Y2) / 2.0 - Y_DIM_OFFSET;
+ FillABC(Proto);
+
+ TempProto->ProtoId = Pid;
+ SET_BIT(TempProtoMask, Pid);
+
+ ConvertProto(Proto, Pid, IClass);
+ AddProtoToProtoPruner(Proto, Pid, IClass,
+ classify_learning_debug_level >= 2);
+
+ Class->TempProtos = push(Class->TempProtos, TempProto);
+ }
+ return IClass->NumProtos - 1;
+} /* MakeNewTempProtos */
+
+/*---------------------------------------------------------------------------*/
+/**
+ *
+ * @param Templates current set of adaptive templates
+ * @param ClassId class containing config to be made permanent
+ * @param ConfigId config to be made permanent
+ * @param Blob current blob being adapted to
+ *
+ * Globals: none
+ */
+void Classify::MakePermanent(ADAPT_TEMPLATES Templates,
+ CLASS_ID ClassId,
+ int ConfigId,
+ TBLOB *Blob) {
+ UNICHAR_ID *Ambigs;
+ TEMP_CONFIG Config;
+ ADAPT_CLASS Class;
+ PROTO_KEY ProtoKey;
+
+ Class = Templates->Class[ClassId];
+ Config = TempConfigFor(Class, ConfigId);
+
+ MakeConfigPermanent(Class, ConfigId);
+ if (Class->NumPermConfigs == 0)
+ Templates->NumPermClasses++;
+ Class->NumPermConfigs++;
+
+ // Initialize permanent config.
+ Ambigs = GetAmbiguities(Blob, ClassId);
+ auto Perm = static_cast<PERM_CONFIG>(malloc(sizeof(PERM_CONFIG_STRUCT)));
+ Perm->Ambigs = Ambigs;
+ Perm->FontinfoId = Config->FontinfoId;
+
+ // Free memory associated with temporary config (since ADAPTED_CONFIG
+ // is a union we need to clean up before we record permanent config).
+ ProtoKey.Templates = Templates;
+ ProtoKey.ClassId = ClassId;
+ ProtoKey.ConfigId = ConfigId;
+ Class->TempProtos = delete_d(Class->TempProtos, &ProtoKey, MakeTempProtoPerm);
+ FreeTempConfig(Config);
+
+ // Record permanent config.
+ PermConfigFor(Class, ConfigId) = Perm;
+
+ if (classify_learning_debug_level >= 1) {
+ tprintf("Making config %d for %s (ClassId %d) permanent:"
+ " fontinfo id %d, ambiguities '",
+ ConfigId, getDict().getUnicharset().debug_str(ClassId).c_str(),
+ ClassId, PermConfigFor(Class, ConfigId)->FontinfoId);
+ for (UNICHAR_ID *AmbigsPointer = Ambigs;
+ *AmbigsPointer >= 0; ++AmbigsPointer)
+ tprintf("%s", unicharset.id_to_unichar(*AmbigsPointer));
+ tprintf("'.\n");
+ }
+} /* MakePermanent */
+
+/*---------------------------------------------------------------------------*/
+/**
+ * This routine converts TempProto to be permanent if
+ * its proto id is used by the configuration specified in
+ * ProtoKey.
+ *
+ * @param item1 (TEMP_PROTO) temporary proto to compare to key
+ * @param item2 (PROTO_KEY) defines which protos to make permanent
+ *
+ * Globals: none
+ *
+ * @return true if TempProto is converted, false otherwise
+ */
+int MakeTempProtoPerm(void *item1, void *item2) {
+ ADAPT_CLASS Class;
+ TEMP_CONFIG Config;
+ TEMP_PROTO TempProto;
+ PROTO_KEY *ProtoKey;
+
+ TempProto = static_cast<TEMP_PROTO>(item1);
+ ProtoKey = static_cast<PROTO_KEY *>(item2);
+
+ Class = ProtoKey->Templates->Class[ProtoKey->ClassId];
+ Config = TempConfigFor(Class, ProtoKey->ConfigId);
+
+ if (TempProto->ProtoId > Config->MaxProtoId ||
+ !test_bit (Config->Protos, TempProto->ProtoId))
+ return false;
+
+ MakeProtoPermanent(Class, TempProto->ProtoId);
+ AddProtoToClassPruner(&(TempProto->Proto), ProtoKey->ClassId,
+ ProtoKey->Templates->Templates);
+ FreeTempProto(TempProto);
+
+ return true;
+} /* MakeTempProtoPerm */
+
+/*---------------------------------------------------------------------------*/
+/**
+ * This routine writes the matches in Results to File.
+ *
+ * @param results match results to write to File
+ *
+ * Globals: none
+ */
+void Classify::PrintAdaptiveMatchResults(const ADAPT_RESULTS& results) {
+ for (int i = 0; i < results.match.size(); ++i) {
+ tprintf("%s ", unicharset.debug_str(results.match[i].unichar_id).c_str());
+ results.match[i].Print();
+ }
+} /* PrintAdaptiveMatchResults */
+
+/*---------------------------------------------------------------------------*/
+/**
+ * This routine steps through each matching class in Results
+ * and removes it from the match list if its rating
+ * is worse than the BestRating plus a pad. In other words,
+ * all good matches get moved to the front of the classes
+ * array.
+ *
+ * @param Results contains matches to be filtered
+ *
+ * Globals:
+ * - matcher_bad_match_pad defines a "bad match"
+ */
+void Classify::RemoveBadMatches(ADAPT_RESULTS *Results) {
+ int Next, NextGood;
+ float BadMatchThreshold;
+ static const char* romans = "i v x I V X";
+ BadMatchThreshold = Results->best_rating - matcher_bad_match_pad;
+
+ if (classify_bln_numeric_mode) {
+ UNICHAR_ID unichar_id_one = unicharset.contains_unichar("1") ?
+ unicharset.unichar_to_id("1") : -1;
+ UNICHAR_ID unichar_id_zero = unicharset.contains_unichar("0") ?
+ unicharset.unichar_to_id("0") : -1;
+ float scored_one = ScoredUnichar(unichar_id_one, *Results);
+ float scored_zero = ScoredUnichar(unichar_id_zero, *Results);
+
+ for (Next = NextGood = 0; Next < Results->match.size(); Next++) {
+ const UnicharRating& match = Results->match[Next];
+ if (match.rating >= BadMatchThreshold) {
+ if (!unicharset.get_isalpha(match.unichar_id) ||
+ strstr(romans,
+ unicharset.id_to_unichar(match.unichar_id)) != nullptr) {
+ } else if (unicharset.eq(match.unichar_id, "l") &&
+ scored_one < BadMatchThreshold) {
+ Results->match[Next].unichar_id = unichar_id_one;
+ } else if (unicharset.eq(match.unichar_id, "O") &&
+ scored_zero < BadMatchThreshold) {
+ Results->match[Next].unichar_id = unichar_id_zero;
+ } else {
+ Results->match[Next].unichar_id = INVALID_UNICHAR_ID; // Don't copy.
+ }
+ if (Results->match[Next].unichar_id != INVALID_UNICHAR_ID) {
+ if (NextGood == Next) {
+ ++NextGood;
+ } else {
+ Results->match[NextGood++] = Results->match[Next];
+ }
+ }
+ }
+ }
+ } else {
+ for (Next = NextGood = 0; Next < Results->match.size(); Next++) {
+ if (Results->match[Next].rating >= BadMatchThreshold) {
+ if (NextGood == Next) {
+ ++NextGood;
+ } else {
+ Results->match[NextGood++] = Results->match[Next];
+ }
+ }
+ }
+ }
+ Results->match.resize(NextGood);
+} /* RemoveBadMatches */
+
+/*----------------------------------------------------------------------------*/
+/**
+ * This routine discards extra digits or punctuation from the results.
+ * We keep only the top 2 punctuation answers and the top 1 digit answer if
+ * present.
+ *
+ * @param Results contains matches to be filtered
+ */
+void Classify::RemoveExtraPuncs(ADAPT_RESULTS *Results) {
+ int Next, NextGood;
+ int punc_count; /*no of garbage characters */
+ int digit_count;
+ /*garbage characters */
+ static char punc_chars[] = ". , ; : / ` ~ ' - = \\ | \" ! _ ^";
+ static char digit_chars[] = "0 1 2 3 4 5 6 7 8 9";
+
+ punc_count = 0;
+ digit_count = 0;
+ for (Next = NextGood = 0; Next < Results->match.size(); Next++) {
+ const UnicharRating& match = Results->match[Next];
+ bool keep = true;
+ if (strstr(punc_chars,
+ unicharset.id_to_unichar(match.unichar_id)) != nullptr) {
+ if (punc_count >= 2)
+ keep = false;
+ punc_count++;
+ } else {
+ if (strstr(digit_chars,
+ unicharset.id_to_unichar(match.unichar_id)) != nullptr) {
+ if (digit_count >= 1)
+ keep = false;
+ digit_count++;
+ }
+ }
+ if (keep) {
+ if (NextGood == Next) {
+ ++NextGood;
+ } else {
+ Results->match[NextGood++] = match;
+ }
+ }
+ }
+ Results->match.resize(NextGood);
+} /* RemoveExtraPuncs */
+
+/*---------------------------------------------------------------------------*/
+/**
+ * This routine resets the internal thresholds inside
+ * the integer matcher to correspond to the specified
+ * threshold.
+ *
+ * @param Threshold threshold for creating new templates
+ *
+ * Globals:
+ * - matcher_good_threshold default good match rating
+ */
+void Classify::SetAdaptiveThreshold(float Threshold) {
+ Threshold = (Threshold == matcher_good_threshold) ? 0.9: (1.0 - Threshold);
+ classify_adapt_proto_threshold.set_value(
+ ClipToRange<int>(255 * Threshold, 0, 255));
+ classify_adapt_feature_threshold.set_value(
+ ClipToRange<int>(255 * Threshold, 0, 255));
+} /* SetAdaptiveThreshold */
+
+#ifndef GRAPHICS_DISABLED
+
+/*---------------------------------------------------------------------------*/
+/**
+ * This routine displays debug information for the best config
+ * of the given shape_id for the given set of features.
+ *
+ * @param shape_id classifier id to work with
+ * @param features features of the unknown character
+ * @param num_features Number of features in the features array.
+ */
+
+void Classify::ShowBestMatchFor(int shape_id,
+ const INT_FEATURE_STRUCT* features,
+ int num_features) {
+ uint32_t config_mask;
+ if (UnusedClassIdIn(PreTrainedTemplates, shape_id)) {
+ tprintf("No built-in templates for class/shape %d\n", shape_id);
+ return;
+ }
+ if (num_features <= 0) {
+ tprintf("Illegal blob (char norm features)!\n");
+ return;
+ }
+ UnicharRating cn_result;
+ classify_norm_method.set_value(character);
+ im_.Match(ClassForClassId(PreTrainedTemplates, shape_id),
+ AllProtosOn, AllConfigsOn,
+ num_features, features, &cn_result,
+ classify_adapt_feature_threshold, NO_DEBUG,
+ matcher_debug_separate_windows);
+ tprintf("\n");
+ config_mask = 1 << cn_result.config;
+
+ tprintf("Static Shape ID: %d\n", shape_id);
+ ShowMatchDisplay();
+ im_.Match(ClassForClassId(PreTrainedTemplates, shape_id), AllProtosOn,
+ &config_mask, num_features, features, &cn_result,
+ classify_adapt_feature_threshold, matcher_debug_flags,
+ matcher_debug_separate_windows);
+ UpdateMatchDisplay();
+} /* ShowBestMatchFor */
+
+#endif // !GRAPHICS_DISABLED
+
+// Returns a string for the classifier class_id: either the corresponding
+// unicharset debug_str or the shape_table_ debug str.
+STRING Classify::ClassIDToDebugStr(const INT_TEMPLATES_STRUCT* templates,
+ int class_id, int config_id) const {
+ STRING class_string;
+ if (templates == PreTrainedTemplates && shape_table_ != nullptr) {
+ int shape_id = ClassAndConfigIDToFontOrShapeID(class_id, config_id);
+ class_string = shape_table_->DebugStr(shape_id);
+ } else {
+ class_string = unicharset.debug_str(class_id);
+ }
+ return class_string;
+}
+
+// Converts a classifier class_id index to a shape_table_ index
+int Classify::ClassAndConfigIDToFontOrShapeID(int class_id,
+ int int_result_config) const {
+ int font_set_id = PreTrainedTemplates->Class[class_id]->font_set_id;
+ // Older inttemps have no font_ids.
+ if (font_set_id < 0)
+ return kBlankFontinfoId;
+ const FontSet &fs = fontset_table_.get(font_set_id);
+ ASSERT_HOST(int_result_config >= 0 && int_result_config < fs.size);
+ return fs.configs[int_result_config];
+}
+
+// Converts a shape_table_ index to a classifier class_id index (not a
+// unichar-id!). Uses a search, so not fast.
+int Classify::ShapeIDToClassID(int shape_id) const {
+ for (int id = 0; id < PreTrainedTemplates->NumClasses; ++id) {
+ int font_set_id = PreTrainedTemplates->Class[id]->font_set_id;
+ ASSERT_HOST(font_set_id >= 0);
+ const FontSet &fs = fontset_table_.get(font_set_id);
+ for (int config = 0; config < fs.size; ++config) {
+ if (fs.configs[config] == shape_id)
+ return id;
+ }
+ }
+ tprintf("Shape %d not found\n", shape_id);
+ return -1;
+}
+
+// Returns true if the given TEMP_CONFIG is good enough to make it
+// a permanent config.
+bool Classify::TempConfigReliable(CLASS_ID class_id,
+ const TEMP_CONFIG &config) {
+ if (classify_learning_debug_level >= 1) {
+ tprintf("NumTimesSeen for config of %s is %d\n",
+ getDict().getUnicharset().debug_str(class_id).c_str(),
+ config->NumTimesSeen);
+ }
+ if (config->NumTimesSeen >= matcher_sufficient_examples_for_prototyping) {
+ return true;
+ } else if (config->NumTimesSeen < matcher_min_examples_for_prototyping) {
+ return false;
+ } else if (use_ambigs_for_adaption) {
+ // Go through the ambigs vector and see whether we have already seen
+ // enough times all the characters represented by the ambigs vector.
+ const UnicharIdVector *ambigs =
+ getDict().getUnicharAmbigs().AmbigsForAdaption(class_id);
+ int ambigs_size = (ambigs == nullptr) ? 0 : ambigs->size();
+ for (int ambig = 0; ambig < ambigs_size; ++ambig) {
+ ADAPT_CLASS ambig_class = AdaptedTemplates->Class[(*ambigs)[ambig]];
+ assert(ambig_class != nullptr);
+ if (ambig_class->NumPermConfigs == 0 &&
+ ambig_class->MaxNumTimesSeen <
+ matcher_min_examples_for_prototyping) {
+ if (classify_learning_debug_level >= 1) {
+ tprintf("Ambig %s has not been seen enough times,"
+ " not making config for %s permanent\n",
+ getDict().getUnicharset().debug_str(
+ (*ambigs)[ambig]).c_str(),
+ getDict().getUnicharset().debug_str(class_id).c_str());
+ }
+ return false;
+ }
+ }
+ }
+ return true;
+}
+
+void Classify::UpdateAmbigsGroup(CLASS_ID class_id, TBLOB *Blob) {
+ const UnicharIdVector *ambigs =
+ getDict().getUnicharAmbigs().ReverseAmbigsForAdaption(class_id);
+ int ambigs_size = (ambigs == nullptr) ? 0 : ambigs->size();
+ if (classify_learning_debug_level >= 1) {
+ tprintf("Running UpdateAmbigsGroup for %s class_id=%d\n",
+ getDict().getUnicharset().debug_str(class_id).c_str(), class_id);
+ }
+ for (int ambig = 0; ambig < ambigs_size; ++ambig) {
+ CLASS_ID ambig_class_id = (*ambigs)[ambig];
+ const ADAPT_CLASS ambigs_class = AdaptedTemplates->Class[ambig_class_id];
+ for (int cfg = 0; cfg < MAX_NUM_CONFIGS; ++cfg) {
+ if (ConfigIsPermanent(ambigs_class, cfg)) continue;
+ const TEMP_CONFIG config =
+ TempConfigFor(AdaptedTemplates->Class[ambig_class_id], cfg);
+ if (config != nullptr && TempConfigReliable(ambig_class_id, config)) {
+ if (classify_learning_debug_level >= 1) {
+ tprintf("Making config %d of %s permanent\n", cfg,
+ getDict().getUnicharset().debug_str(
+ ambig_class_id).c_str());
+ }
+ MakePermanent(AdaptedTemplates, ambig_class_id, cfg, Blob);
+ }
+ }
+ }
+}
+
+} // namespace tesseract