summaryrefslogtreecommitdiff
blob: 14508b4e57f3512a6ee9aa0a4b66a1e3e36d7778 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
/**********************************************************************
 * File:        coutln.cpp  (Formerly coutline.c)
 * Description: Code for the C_OUTLINE class.
 * Author:      Ray Smith
 *
 * (C) Copyright 1991, Hewlett-Packard Ltd.
 ** Licensed under the Apache License, Version 2.0 (the "License");
 ** you may not use this file except in compliance with the License.
 ** You may obtain a copy of the License at
 ** http://www.apache.org/licenses/LICENSE-2.0
 ** Unless required by applicable law or agreed to in writing, software
 ** distributed under the License is distributed on an "AS IS" BASIS,
 ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 ** See the License for the specific language governing permissions and
 ** limitations under the License.
 *
 **********************************************************************/

 // Include automatically generated configuration file if running autoconf.
#ifdef HAVE_CONFIG_H
#include "config_auto.h"
#endif

#include "coutln.h"

#include "arrayaccess.h"  // for GET_DATA_BYTE
#include "blobs.h"        // for TPOINT
#include "crakedge.h"     // for CRACKEDGE
#include "environ.h"      // for l_uint32
#include "errcode.h"      // for ASSERT_HOST
#include "normalis.h"     // for DENORM

#include "helpers.h"      // for ClipToRange, IntCastRounded, Modulo

#include "allheaders.h"   // for pixSetPixel, pixGetData, pixRasterop, pixGe...
#include "pix.h"          // for Pix (ptr only), PIX_DST, PIX_NOT

#include <algorithm>      // for max, min
#include <cmath>          // for abs
#include <cstdlib>        // for abs
#include <cstring>        // for memset, memcpy, memmove

namespace tesseract {

ELISTIZE (C_OUTLINE)
ICOORD C_OUTLINE::step_coords[4] = {
  ICOORD (-1, 0), ICOORD (0, -1), ICOORD (1, 0), ICOORD (0, 1)
};

/**
 * @name C_OUTLINE::C_OUTLINE
 *
 * Constructor to build a C_OUTLINE from a CRACKEDGE LOOP.
 * @param startpt outline to convert
 * @param bot_left bounding box
 * @param top_right bounding box
 * @param length length of loop
 */

C_OUTLINE::C_OUTLINE(CRACKEDGE* startpt, ICOORD bot_left, ICOORD top_right,
                     int16_t length)
    : box(bot_left, top_right), start(startpt->pos), offsets(nullptr) {
  int16_t stepindex;               //index to step
  CRACKEDGE *edgept;             //current point

  stepcount = length;            //no of steps
  if (length == 0) {
    steps = nullptr;
    return;
  }
                                 //get memory
  steps = static_cast<uint8_t *>(calloc(step_mem(), 1));
  edgept = startpt;

  for (stepindex = 0; stepindex < length; stepindex++) {
                                 //set compact step
    set_step (stepindex, edgept->stepdir);
    edgept = edgept->next;
  }
}

/**
 * @name C_OUTLINE::C_OUTLINE
 *
 * Constructor to build a C_OUTLINE from a C_OUTLINE_FRAG.
 */
C_OUTLINE::C_OUTLINE (
//constructor
                                 //steps to copy
ICOORD startpt, DIR128 * new_steps,
int16_t length                     //length of loop
):start (startpt), offsets(nullptr) {
  int8_t dirdiff;                  //direction difference
  DIR128 prevdir;                //previous direction
  DIR128 dir;                    //current direction
  DIR128 lastdir;                //dir of last step
  TBOX new_box;                   //easy bounding
  int16_t stepindex;               //index to step
  int16_t srcindex;                //source steps
  ICOORD pos;                    //current position

  pos = startpt;
  stepcount = length;            // No. of steps.
  ASSERT_HOST(length >= 0);
  steps = static_cast<uint8_t*>(calloc(step_mem(), 1));  // Get memory.

  lastdir = new_steps[length - 1];
  prevdir = lastdir;
  for (stepindex = 0, srcindex = 0; srcindex < length;
  stepindex++, srcindex++) {
    new_box = TBOX (pos, pos);
    box += new_box;
                                 //copy steps
    dir = new_steps[srcindex];
    set_step(stepindex, dir);
    dirdiff = dir - prevdir;
    pos += step (stepindex);
    if ((dirdiff == 64 || dirdiff == -64) && stepindex > 0) {
      stepindex -= 2;            //cancel there-and-back
      prevdir = stepindex >= 0 ? step_dir (stepindex) : lastdir;
    }
    else
      prevdir = dir;
  }
  ASSERT_HOST (pos.x () == startpt.x () && pos.y () == startpt.y ());
  do {
    dirdiff = step_dir (stepindex - 1) - step_dir (0);
    if (dirdiff == 64 || dirdiff == -64) {
      start += step (0);
      stepindex -= 2;            //cancel there-and-back
      for (int i = 0; i < stepindex; ++i)
        set_step(i, step_dir(i + 1));
    }
  }
  while (stepindex > 1 && (dirdiff == 64 || dirdiff == -64));
  stepcount = stepindex;
  ASSERT_HOST (stepcount >= 4);
}

/**
 * @name C_OUTLINE::C_OUTLINE
 *
 * Constructor to build a C_OUTLINE from a rotation of a C_OUTLINE.
 * @param srcline outline to rotate
 * @param rotation rotate to coord
 */

C_OUTLINE::C_OUTLINE(C_OUTLINE* srcline, FCOORD rotation) : offsets(nullptr) {
  TBOX new_box;                  //easy bounding
  int16_t stepindex;             //index to step
  int16_t dirdiff;               //direction change
  ICOORD pos;                    //current position
  ICOORD prevpos;                //previous dest point

  ICOORD destpos;                //destination point
  int16_t destindex = INT16_MAX; //index to step
  DIR128 dir;                    //coded direction
  uint8_t new_step;

  stepcount = srcline->stepcount * 2;
  if (stepcount == 0) {
    steps = nullptr;
    box = srcline->box;
    box.rotate(rotation);
    return;
  }
                                 //get memory
  steps = static_cast<uint8_t *>(calloc(step_mem(), 1));

  for (int iteration = 0; iteration < 2; ++iteration) {
    DIR128 round1 = iteration == 0 ? 32 : 0;
    DIR128 round2 = iteration != 0 ? 32 : 0;
    pos = srcline->start;
    prevpos = pos;
    prevpos.rotate (rotation);
    start = prevpos;
    box = TBOX (start, start);
    destindex = 0;
    for (stepindex = 0; stepindex < srcline->stepcount; stepindex++) {
      pos += srcline->step (stepindex);
      destpos = pos;
      destpos.rotate (rotation);
      //  tprintf("%i %i %i %i ", destpos.x(), destpos.y(), pos.x(), pos.y());
      while (destpos.x () != prevpos.x () || destpos.y () != prevpos.y ()) {
        dir = DIR128 (FCOORD (destpos - prevpos));
        dir += 64;                 //turn to step style
        new_step = dir.get_dir ();
        //  tprintf(" %i\n", new_step);
        if (new_step & 31) {
          set_step(destindex++, dir + round1);
          prevpos += step(destindex - 1);
          if (destindex < 2
            || ((dirdiff =
            step_dir (destindex - 1) - step_dir (destindex - 2)) !=
            -64 && dirdiff != 64)) {
            set_step(destindex++, dir + round2);
            prevpos += step(destindex - 1);
          } else {
            prevpos -= step(destindex - 1);
            destindex--;
            prevpos -= step(destindex - 1);
            set_step(destindex - 1, dir + round2);
            prevpos += step(destindex - 1);
          }
        }
        else {
          set_step(destindex++, dir);
          prevpos += step(destindex - 1);
        }
        while (destindex >= 2 &&
               ((dirdiff =
                 step_dir (destindex - 1) - step_dir (destindex - 2)) == -64 ||
                dirdiff == 64)) {
          prevpos -= step(destindex - 1);
          prevpos -= step(destindex - 2);
          destindex -= 2;        // Forget u turn
        }
        //ASSERT_HOST(prevpos.x() == destpos.x() && prevpos.y() == destpos.y());
        new_box = TBOX (destpos, destpos);
        box += new_box;
      }
    }
    ASSERT_HOST (destpos.x () == start.x () && destpos.y () == start.y ());
    while (destindex > 1) {
      dirdiff = step_dir(destindex - 1) - step_dir(0);
      if (dirdiff != 64 && dirdiff != -64) {
        break;
      }
      start += step (0);
      destindex -= 2;
      for (int i = 0; i < destindex; ++i)
        set_step(i, step_dir(i + 1));
    }
    if (destindex >= 4)
      break;
  }
  ASSERT_HOST(destindex <= stepcount);
  stepcount = destindex;
  destpos = start;
  for (stepindex = 0; stepindex < stepcount; stepindex++) {
    destpos += step (stepindex);
  }
  ASSERT_HOST (destpos.x () == start.x () && destpos.y () == start.y ());
}

// Build a fake outline, given just a bounding box and append to the list.
void C_OUTLINE::FakeOutline(const TBOX& box, C_OUTLINE_LIST* outlines) {
  C_OUTLINE_IT ol_it(outlines);
  // Make a C_OUTLINE from the bounds. This is a bit of a hack,
  // as there is no outline, just a bounding box, but it works nicely.
  CRACKEDGE start;
  start.pos = box.topleft();
  C_OUTLINE* outline = new C_OUTLINE(&start, box.topleft(), box.botright(), 0);
  ol_it.add_to_end(outline);
}

/**
 * @name C_OUTLINE::area
 *
 * Compute the area of the outline.
 */

int32_t C_OUTLINE::area() const {
  int stepindex;                 //current step
  int32_t total_steps;             //steps to do
  int32_t total;                   //total area
  ICOORD pos;                    //position of point
  ICOORD next_step;              //step to next pix
  // We aren't going to modify the list, or its contents, but there is
  // no const iterator.
  C_OUTLINE_IT it(const_cast<C_OUTLINE_LIST*>(&children));

  pos = start_pos ();
  total_steps = pathlength ();
  total = 0;
  for (stepindex = 0; stepindex < total_steps; stepindex++) {
                                 //all intersected
    next_step = step (stepindex);
    if (next_step.x () < 0)
      total += pos.y ();
    else if (next_step.x () > 0)
      total -= pos.y ();
    pos += next_step;
  }
  for (it.mark_cycle_pt (); !it.cycled_list (); it.forward ())
    total += it.data ()->area ();//add areas of children

  return total;
}

/**
 * @name C_OUTLINE::perimeter
 *
 * Compute the perimeter of the outline and its first level children.
 */

int32_t C_OUTLINE::perimeter() const {
  int32_t total_steps;             // Return value.
  // We aren't going to modify the list, or its contents, but there is
  // no const iterator.
  C_OUTLINE_IT it(const_cast<C_OUTLINE_LIST*>(&children));

  total_steps = pathlength();
  for (it.mark_cycle_pt(); !it.cycled_list(); it.forward())
    total_steps += it.data()->pathlength();  // Add perimeters of children.

  return total_steps;
}

/**
 * @name C_OUTLINE::outer_area
 *
 * Compute the area of the outline.
 */

int32_t C_OUTLINE::outer_area() const {
  int stepindex;                 //current step
  int32_t total_steps;             //steps to do
  int32_t total;                   //total area
  ICOORD pos;                    //position of point
  ICOORD next_step;              //step to next pix

  pos = start_pos ();
  total_steps = pathlength ();
  if (total_steps == 0)
    return box.area();
  total = 0;
  for (stepindex = 0; stepindex < total_steps; stepindex++) {
                                 //all intersected
    next_step = step (stepindex);
    if (next_step.x () < 0)
      total += pos.y ();
    else if (next_step.x () > 0)
      total -= pos.y ();
    pos += next_step;
  }

  return total;
}

/**
 * @name C_OUTLINE::count_transitions
 *
 * Compute the number of x and y maxes and mins in the outline.
 * @param threshold winding number on size
 */

int32_t C_OUTLINE::count_transitions(int32_t threshold) {
  bool first_was_max_x;         //what was first
  bool first_was_max_y;
  bool looking_for_max_x;       //what is next
  bool looking_for_min_x;
  bool looking_for_max_y;       //what is next
  bool looking_for_min_y;
  int stepindex;                 //current step
  int32_t total_steps;             //steps to do
                                 //current limits
  int32_t max_x, min_x, max_y, min_y;
  int32_t initial_x, initial_y;    //initial limits
  int32_t total;                   //total changes
  ICOORD pos;                    //position of point
  ICOORD next_step;              //step to next pix

  pos = start_pos();
  total_steps = pathlength();
  total = 0;
  max_x = min_x = pos.x();
  max_y = min_y = pos.y();
  looking_for_max_x = true;
  looking_for_min_x = true;
  looking_for_max_y = true;
  looking_for_min_y = true;
  first_was_max_x = false;
  first_was_max_y = false;
  initial_x = pos.x();
  initial_y = pos.y();          //stop uninit warning
  for (stepindex = 0; stepindex < total_steps; stepindex++) {
                                 //all intersected
    next_step = step(stepindex);
    pos += next_step;
    if (next_step.x() < 0) {
      if (looking_for_max_x && pos.x() < min_x)
        min_x = pos.x();
      if (looking_for_min_x && max_x - pos.x() > threshold) {
        if (looking_for_max_x) {
          initial_x = max_x;
          first_was_max_x = false;
        }
        total++;
        looking_for_max_x = true;
        looking_for_min_x = false;
        min_x = pos.x();        //reset min
      }
    }
    else if (next_step.x() > 0) {
      if (looking_for_min_x && pos.x() > max_x)
        max_x = pos.x();
      if (looking_for_max_x && pos.x() - min_x > threshold) {
        if (looking_for_min_x) {
          initial_x = min_x;     //remember first min
          first_was_max_x = true;
        }
        total++;
        looking_for_max_x = false;
        looking_for_min_x = true;
        max_x = pos.x();
      }
    }
    else if (next_step.y() < 0) {
      if (looking_for_max_y && pos.y() < min_y)
        min_y = pos.y();
      if (looking_for_min_y && max_y - pos.y() > threshold) {
        if (looking_for_max_y) {
          initial_y = max_y;     //remember first max
          first_was_max_y = false;
        }
        total++;
        looking_for_max_y = true;
        looking_for_min_y = false;
        min_y = pos.y();        //reset min
      }
    }
    else {
      if (looking_for_min_y && pos.y() > max_y)
        max_y = pos.y();
      if (looking_for_max_y && pos.y() - min_y > threshold) {
        if (looking_for_min_y) {
          initial_y = min_y;     //remember first min
          first_was_max_y = true;
        }
        total++;
        looking_for_max_y = false;
        looking_for_min_y = true;
        max_y = pos.y();
      }
    }

  }
  if (first_was_max_x && looking_for_min_x) {
    if (max_x - initial_x > threshold)
      total++;
    else
      total--;
  }
  else if (!first_was_max_x && looking_for_max_x) {
    if (initial_x - min_x > threshold)
      total++;
    else
      total--;
  }
  if (first_was_max_y && looking_for_min_y) {
    if (max_y - initial_y > threshold)
      total++;
    else
      total--;
  }
  else if (!first_was_max_y && looking_for_max_y) {
    if (initial_y - min_y > threshold)
      total++;
    else
      total--;
  }

  return total;
}

/**
 * @name C_OUTLINE::operator<
 *
 * @return true if the left operand is inside the right one.
 * @param other other outline
 */

bool
C_OUTLINE::operator<(const C_OUTLINE& other) const {
  int16_t count = 0;               //winding count
  ICOORD pos;                    //position of point
  int32_t stepindex;               //index to cstep

  if (!box.overlap (other.box))
    return false;                //can't be contained
  if (stepcount == 0)
    return other.box.contains(this->box);

  pos = start;
  for (stepindex = 0; stepindex < stepcount
    && (count = other.winding_number (pos)) == INTERSECTING; stepindex++)
    pos += step (stepindex);     //try all points
  if (count == INTERSECTING) {
                                 //all intersected
    pos = other.start;
    for (stepindex = 0; stepindex < other.stepcount
      && (count = winding_number (pos)) == INTERSECTING; stepindex++)
                                 //try other way round
      pos += other.step (stepindex);
    return count == INTERSECTING || count == 0;
  }
  return count != 0;
}

/**
 * @name C_OUTLINE::winding_number
 *
 * @return the winding number of the outline around the given point.
 * @param point point to wind around
 */

int16_t C_OUTLINE::winding_number(ICOORD point) const {
  int16_t stepindex;               //index to cstep
  int16_t count;                   //winding count
  ICOORD vec;                    //to current point
  ICOORD stepvec;                //step vector
  int32_t cross;                   //cross product

  vec = start - point;           //vector to it
  count = 0;
  for (stepindex = 0; stepindex < stepcount; stepindex++) {
    stepvec = step (stepindex);  //get the step
                                 //crossing the line
    if (vec.y () <= 0 && vec.y () + stepvec.y () > 0) {
      cross = vec * stepvec;     //cross product
      if (cross > 0)
        count++;                 //crossing right half
      else if (cross == 0)
        return INTERSECTING;     //going through point
    }
    else if (vec.y () > 0 && vec.y () + stepvec.y () <= 0) {
      cross = vec * stepvec;
      if (cross < 0)
        count--;                 //crossing back
      else if (cross == 0)
        return INTERSECTING;     //illegal
    }
    vec += stepvec;              //sum vectors
  }
  return count;                  //winding number
}

/**
 * C_OUTLINE::turn_direction
 *
 * @return the sum direction delta of the outline.
 */

int16_t C_OUTLINE::turn_direction() const {  //winding number
  DIR128 prevdir;                //previous direction
  DIR128 dir;                    //current direction
  int16_t stepindex;               //index to cstep
  int8_t dirdiff;                  //direction difference
  int16_t count;                   //winding count

  if (stepcount == 0)
    return 128;
  count = 0;
  prevdir = step_dir (stepcount - 1);
  for (stepindex = 0; stepindex < stepcount; stepindex++) {
    dir = step_dir (stepindex);
    dirdiff = dir - prevdir;
    ASSERT_HOST (dirdiff == 0 || dirdiff == 32 || dirdiff == -32);
    count += dirdiff;
    prevdir = dir;
  }
  ASSERT_HOST (count == 128 || count == -128);
  return count;                  //winding number
}

/**
 * @name C_OUTLINE::reverse
 *
 * Reverse the direction of an outline.
 */

void C_OUTLINE::reverse() {  //reverse drection
  DIR128 halfturn = MODULUS / 2; //amount to shift
  DIR128 stepdir;                //direction of step
  int16_t stepindex;               //index to cstep
  int16_t farindex;                //index to other side
  int16_t halfsteps;               //half of stepcount

  halfsteps = (stepcount + 1) / 2;
  for (stepindex = 0; stepindex < halfsteps; stepindex++) {
    farindex = stepcount - stepindex - 1;
    stepdir = step_dir (stepindex);
    set_step (stepindex, step_dir (farindex) + halfturn);
    set_step (farindex, stepdir + halfturn);
  }
}

/**
 * @name C_OUTLINE::move
 *
 * Move C_OUTLINE by vector
 * @param vec vector to reposition OUTLINE by
 */

void C_OUTLINE::move(const ICOORD vec) {
  C_OUTLINE_IT it(&children);  // iterator

  box.move (vec);
  start += vec;

  for (it.mark_cycle_pt (); !it.cycled_list (); it.forward ())
    it.data ()->move (vec);      // move child outlines
}

/**
 * Returns true if *this and its children are legally nested.
 * The outer area of a child should have the opposite sign to the
 * parent. If not, it means we have discarded an outline in between
 * (probably due to excessive length).
 */
bool C_OUTLINE::IsLegallyNested() const {
  if (stepcount == 0) return true;
  int64_t parent_area = outer_area();
  // We aren't going to modify the list, or its contents, but there is
  // no const iterator.
  C_OUTLINE_IT child_it(const_cast<C_OUTLINE_LIST*>(&children));
  for (child_it.mark_cycle_pt(); !child_it.cycled_list(); child_it.forward()) {
    const C_OUTLINE* child = child_it.data();
    if (child->outer_area() * parent_area > 0 || !child->IsLegallyNested())
      return false;
  }
  return true;
}

/**
 * If this outline is smaller than the given min_size, delete this and
 * remove from its list, via *it, after checking that *it points to this.
 * Otherwise, if any children of this are too small, delete them.
 * On entry, *it must be an iterator pointing to this. If this gets deleted
 * then this is extracted from *it, so an iteration can continue.
 * @param min_size minimum size for outline
 * @param it outline iterator
 */
void C_OUTLINE::RemoveSmallRecursive(int min_size, C_OUTLINE_IT* it) {
  if (box.width() < min_size || box.height() < min_size) {
    ASSERT_HOST(this == it->data());
    delete it->extract();  // Too small so get rid of it and any children.
  } else if (!children.empty()) {
    // Search the children of this, deleting any that are too small.
    C_OUTLINE_IT child_it(&children);
    for (child_it.mark_cycle_pt(); !child_it.cycled_list();
         child_it.forward()) {
      C_OUTLINE* child = child_it.data();
      child->RemoveSmallRecursive(min_size, &child_it);
    }
  }
}

// Factored out helpers below are used only by ComputeEdgeOffsets to operate
// on data from an 8-bit Pix, and assume that any input x and/or y are already
// constrained to be legal Pix coordinates.

/**
 * Helper computes the local 2-D gradient (dx, dy) from the 2x2 cell centered
 * on the given (x,y). If the cell would go outside the image, it is padded
 * with white.
 */
static void ComputeGradient(const l_uint32* data, int wpl,
                            int x, int y, int width, int height,
                            ICOORD* gradient) {
  const l_uint32* line = data + y * wpl;
  int pix_x_y = x < width && y < height ? GET_DATA_BYTE(line, x) : 255;
  int pix_x_prevy = x < width && y > 0 ? GET_DATA_BYTE(line - wpl, x) : 255;
  int pix_prevx_prevy = x > 0 && y > 0 ? GET_DATA_BYTE(line - wpl, x - 1) : 255;
  int pix_prevx_y = x > 0 && y < height ? GET_DATA_BYTE(line, x - 1) : 255;
  gradient->set_x(pix_x_y + pix_x_prevy - (pix_prevx_y + pix_prevx_prevy));
  gradient->set_y(pix_x_prevy + pix_prevx_prevy - (pix_x_y + pix_prevx_y));
}

/**
 * Helper evaluates a vertical difference, (x,y) - (x,y-1), returning true if
 * the difference, matches diff_sign and updating the best_diff, best_sum,
 * best_y if a new max.
 */
static bool EvaluateVerticalDiff(const l_uint32* data, int wpl, int diff_sign,
                                 int x, int y, int height,
                                 int* best_diff, int* best_sum, int* best_y) {
  if (y <= 0 || y >= height)
    return false;
  const l_uint32* line = data + y * wpl;
  int pixel1 = GET_DATA_BYTE(line - wpl, x);
  int pixel2 = GET_DATA_BYTE(line, x);
  int diff = (pixel2 - pixel1) * diff_sign;
  if (diff > *best_diff) {
    *best_diff = diff;
    *best_sum = pixel1 + pixel2;
    *best_y = y;
  }
  return diff > 0;
}

/**
 * Helper evaluates a horizontal difference, (x,y) - (x-1,y), where y is implied
 * by the input image line, returning true if the difference matches diff_sign
 * and updating the best_diff, best_sum, best_x if a new max.
 */
static bool EvaluateHorizontalDiff(const l_uint32* line, int diff_sign,
                                   int x, int width,
                                   int* best_diff, int* best_sum, int* best_x) {
  if (x <= 0 || x >= width)
    return false;
  int pixel1 = GET_DATA_BYTE(line, x - 1);
  int pixel2 = GET_DATA_BYTE(line, x);
  int diff = (pixel2 - pixel1) * diff_sign;
  if (diff > *best_diff) {
    *best_diff = diff;
    *best_sum = pixel1 + pixel2;
    *best_x = x;
  }
  return diff > 0;
}

/**
 * Adds sub-pixel resolution EdgeOffsets for the outline if the supplied
 * pix is 8-bit. Does nothing otherwise.
 * Operation: Consider the following near-horizontal line:
 * @verbatim
 *   _________
 *            |________
 *                     |________
 * @endverbatim
 * At *every* position along this line, the gradient direction will be close
 * to vertical. Extrapoaltion/interpolation of the position of the threshold
 * that was used to binarize the image gives a more precise vertical position
 * for each horizontal step, and the conflict in step direction and gradient
 * direction can be used to ignore the vertical steps.
 */
void C_OUTLINE::ComputeEdgeOffsets(int threshold, Pix* pix) {
  if (pixGetDepth(pix) != 8) return;
  const l_uint32* data = pixGetData(pix);
  int wpl = pixGetWpl(pix);
  int width = pixGetWidth(pix);
  int height = pixGetHeight(pix);
  bool negative = flag(COUT_INVERSE);
  delete [] offsets;
  offsets = new EdgeOffset[stepcount];
  ICOORD pos = start;
  ICOORD prev_gradient;
  ComputeGradient(data, wpl, pos.x(), height - pos.y(), width, height,
                  &prev_gradient);
  for (int s = 0; s < stepcount; ++s) {
    ICOORD step_vec = step(s);
    TPOINT pt1(pos);
    pos += step_vec;
    TPOINT pt2(pos);
    ICOORD next_gradient;
    ComputeGradient(data, wpl, pos.x(), height - pos.y(), width, height,
                    &next_gradient);
    // Use the sum of the prev and next as the working gradient.
    ICOORD gradient = prev_gradient + next_gradient;
    // best_diff will be manipulated to be always positive.
    int best_diff = 0;
    // offset will be the extrapolation of the location of the greyscale
    // threshold from the edge with the largest difference, relative to the
    // location of the binary edge.
    int offset = 0;
    if (pt1.y == pt2.y && abs(gradient.y()) * 2 >= abs(gradient.x())) {
      // Horizontal step. diff_sign == 1 indicates black above.
      int diff_sign = (pt1.x > pt2.x) == negative ? 1 : -1;
      int x = std::min(pt1.x, pt2.x);
      int y = height - pt1.y;
      int best_sum = 0;
      int best_y = y;
      EvaluateVerticalDiff(data, wpl, diff_sign, x, y, height,
                           &best_diff, &best_sum, &best_y);
      // Find the strongest edge.
      int test_y = y;
      do {
        ++test_y;
      } while (EvaluateVerticalDiff(data, wpl, diff_sign, x, test_y, height,
                                    &best_diff, &best_sum, &best_y));
      test_y = y;
      do {
        --test_y;
      } while (EvaluateVerticalDiff(data, wpl, diff_sign, x, test_y, height,
                                    &best_diff, &best_sum, &best_y));
      offset = diff_sign * (best_sum / 2 - threshold) +
          (y - best_y) * best_diff;
    } else if (pt1.x == pt2.x && abs(gradient.x()) * 2 >= abs(gradient.y())) {
      // Vertical step. diff_sign == 1 indicates black on the left.
      int diff_sign = (pt1.y > pt2.y) == negative ? 1 : -1;
      int x = pt1.x;
      int y = height - std::max(pt1.y, pt2.y);
      const l_uint32* line = pixGetData(pix) + y * wpl;
      int best_sum = 0;
      int best_x = x;
      EvaluateHorizontalDiff(line, diff_sign, x, width,
                             &best_diff, &best_sum, &best_x);
      // Find the strongest edge.
      int test_x = x;
      do {
        ++test_x;
      } while (EvaluateHorizontalDiff(line, diff_sign, test_x, width,
                                      &best_diff, &best_sum, &best_x));
      test_x = x;
      do {
        --test_x;
      } while (EvaluateHorizontalDiff(line, diff_sign, test_x, width,
                                      &best_diff, &best_sum, &best_x));
      offset = diff_sign * (threshold - best_sum / 2) +
          (best_x - x) * best_diff;
    }
    offsets[s].offset_numerator =
        ClipToRange<int>(offset, -INT8_MAX, INT8_MAX);
    offsets[s].pixel_diff = ClipToRange<int>(best_diff, 0, UINT8_MAX);
    if (negative) gradient = -gradient;
    // Compute gradient angle quantized to 256 directions, rotated by 64 (pi/2)
    // to convert from gradient direction to edge direction.
    offsets[s].direction =
        Modulo(FCOORD::binary_angle_plus_pi(gradient.angle()) + 64, 256);
    prev_gradient = next_gradient;
  }
}

/**
 * Adds sub-pixel resolution EdgeOffsets for the outline using only
 * a binary image source.
 *
 * Runs a sliding window of 5 edge steps over the outline, maintaining a count
 * of the number of steps in each of the 4 directions in the window, and a
 * sum of the x or y position of each step (as appropriate to its direction.)
 * Ignores single-count steps EXCEPT the sharp U-turn and smoothes out the
 * perpendicular direction. Eg
 * @verbatim
 * ___              ___       Chain code from the left:
 *    |___    ___   ___|      222122212223221232223000
 *        |___|  |_|          Corresponding counts of each direction:
 *                          0   00000000000000000123
 *                          1   11121111001111100000
 *                          2   44434443443333343321
 *                          3   00000001111111112111
 * Count of direction at center 41434143413313143313
 * Step gets used?              YNYYYNYYYNYYNYNYYYyY (y= U-turn exception)
 * Path redrawn showing only the used points:
 * ___              ___
 *     ___    ___   ___|
 *         ___    _
 * @endverbatim
 * Sub-pixel edge position cannot be shown well with ASCII-art, but each
 * horizontal step's y position is the mean of the y positions of the steps
 * in the same direction in the sliding window, which makes a much smoother
 * outline, without losing important detail.
 */
void C_OUTLINE::ComputeBinaryOffsets() {
  delete [] offsets;
  offsets = new EdgeOffset[stepcount];
  // Count of the number of steps in each direction in the sliding window.
  int dir_counts[4];
  // Sum of the positions (y for a horizontal step, x for vertical) in each
  // direction in the sliding window.
  int pos_totals[4];
  memset(dir_counts, 0, sizeof(dir_counts));
  memset(pos_totals, 0, sizeof(pos_totals));
  ICOORD pos = start;
  ICOORD tail_pos = pos;
  // tail_pos is the trailing position, with the next point to be lost from
  // the window.
  tail_pos -= step(stepcount - 1);
  tail_pos -= step(stepcount - 2);
  // head_pos is the leading position, with the next point to be added to the
  // window.
  ICOORD head_pos = tail_pos;
  // Set up the initial window with 4 points in [-2, 2)
  for (int s = -2; s < 2; ++s) {
    increment_step(s, 1, &head_pos, dir_counts, pos_totals);
  }
  for (int s = 0; s < stepcount; pos += step(s++)) {
    // At step s, s in in the middle of [s-2, s+2].
    increment_step(s + 2, 1, &head_pos, dir_counts, pos_totals);
    int dir_index = chain_code(s);
    ICOORD step_vec = step(s);
    int best_diff = 0;
    int offset = 0;
    // Use only steps that have a count of >=2 OR the strong U-turn with a
    // single d and 2 at d-1 and 2 at d+1 (mod 4).
    if (dir_counts[dir_index] >= 2 || (dir_counts[dir_index] == 1 &&
        dir_counts[Modulo(dir_index - 1, 4)] == 2 &&
        dir_counts[Modulo(dir_index + 1, 4)] == 2)) {
      // Valid step direction.
      best_diff = dir_counts[dir_index];
      int edge_pos = step_vec.x() == 0 ? pos.x() : pos.y();
      // The offset proposes that the actual step should be positioned at
      // the mean position of the steps in the window of the same direction.
      // See ASCII art above.
      offset = pos_totals[dir_index] - best_diff * edge_pos;
    }
    offsets[s].offset_numerator =
        ClipToRange<int>(offset, -INT8_MAX, INT8_MAX);
    offsets[s].pixel_diff = ClipToRange<int>(best_diff, 0, UINT8_MAX);
    // The direction is just the vector from start to end of the window.
    FCOORD direction(head_pos.x() - tail_pos.x(), head_pos.y() - tail_pos.y());
    offsets[s].direction = direction.to_direction();
    increment_step(s - 2, -1, &tail_pos, dir_counts, pos_totals);
  }
}

/**
 * Renders the outline to the given pix, with left and top being
 * the coords of the upper-left corner of the pix.
 */
void C_OUTLINE::render(int left, int top, Pix* pix) const {
  ICOORD pos = start;
  for (int stepindex = 0; stepindex < stepcount; ++stepindex) {
    ICOORD next_step = step(stepindex);
    if (next_step.y() < 0) {
      pixRasterop(pix, 0, top - pos.y(), pos.x() - left, 1,
                  PIX_NOT(PIX_DST), nullptr, 0, 0);
    } else if (next_step.y() > 0) {
      pixRasterop(pix, 0, top - pos.y() - 1, pos.x() - left, 1,
                  PIX_NOT(PIX_DST), nullptr, 0, 0);
    }
    pos += next_step;
  }
}

/**
 * Renders just the outline to the given pix (no fill), with left and top
 * being the coords of the upper-left corner of the pix.
 * @param left coord
 * @param top coord
 * @param pix the pix to outline
 */
void C_OUTLINE::render_outline(int left, int top, Pix* pix) const {
  ICOORD pos = start;
  for (int stepindex = 0; stepindex < stepcount; ++stepindex) {
    ICOORD next_step = step(stepindex);
    if (next_step.y() < 0) {
      pixSetPixel(pix, pos.x() - left, top - pos.y(), 1);
    } else if (next_step.y() > 0) {
      pixSetPixel(pix, pos.x() - left - 1, top - pos.y() - 1, 1);
    } else if (next_step.x() < 0) {
      pixSetPixel(pix, pos.x() - left - 1, top - pos.y(), 1);
    } else if (next_step.x() > 0) {
      pixSetPixel(pix, pos.x() - left, top - pos.y() - 1, 1);
    }
    pos += next_step;
  }
}

/**
 * @name C_OUTLINE::plot
 *
 * Draw the outline in the given colour.
 * @param window window to draw in
 * @param colour colour to draw in
 */

#ifndef GRAPHICS_DISABLED
void C_OUTLINE::plot(ScrollView* window, ScrollView::Color colour) const {
  int16_t stepindex;               // index to cstep
  ICOORD pos;                    // current position
  DIR128 stepdir;                // direction of step

  pos = start;                   // current position
  window->Pen(colour);
  if (stepcount == 0) {
    window->Rectangle(box.left(), box.top(), box.right(), box.bottom());
    return;
  }
  window->SetCursor(pos.x(), pos.y());

  stepindex = 0;
  while (stepindex < stepcount) {
    pos += step(stepindex);    // step to next
    stepdir = step_dir(stepindex);
    stepindex++;               // count steps
    // merge straight lines
    while (stepindex < stepcount &&
           stepdir.get_dir() == step_dir(stepindex).get_dir()) {
      pos += step(stepindex);
      stepindex++;
    }
    window->DrawTo(pos.x(), pos.y());
  }
}

/**
 * Draws the outline in the given colour, normalized using the given denorm,
 * making use of sub-pixel accurate information if available.
 */
void C_OUTLINE::plot_normed(const DENORM& denorm, ScrollView::Color colour,
                            ScrollView* window) const {
  window->Pen(colour);
  if (stepcount == 0) {
    window->Rectangle(box.left(), box.top(), box.right(), box.bottom());
    return;
  }
  const DENORM* root_denorm = denorm.RootDenorm();
  ICOORD pos = start;                   // current position
  FCOORD f_pos = sub_pixel_pos_at_index(pos, 0);
  FCOORD pos_normed;
  denorm.NormTransform(root_denorm, f_pos, &pos_normed);
  window->SetCursor(IntCastRounded(pos_normed.x()),
                    IntCastRounded(pos_normed.y()));
  for (int s = 0; s < stepcount; pos += step(s++)) {
    int edge_weight = edge_strength_at_index(s);
    if (edge_weight == 0) {
      // This point has conflicting gradient and step direction, so ignore it.
      continue;
    }
    FCOORD f_pos = sub_pixel_pos_at_index(pos, s);
    FCOORD pos_normed;
    denorm.NormTransform(root_denorm, f_pos, &pos_normed);
    window->DrawTo(IntCastRounded(pos_normed.x()),
                   IntCastRounded(pos_normed.y()));
  }
}
#endif

/**
 * @name C_OUTLINE::operator=
 *
 * Assignment - deep copy data
 * @param source assign from this
 */

C_OUTLINE& C_OUTLINE::operator=(const C_OUTLINE& source) {
  box = source.box;
  start = source.start;
  free(steps);
  steps = nullptr;
  if (!children.empty()) {
    children.clear();
  }
  children.deep_copy(&source.children, &deep_copy);
  delete [] offsets;
  offsets = nullptr;
  stepcount = source.stepcount;
  if (stepcount > 0) {
    steps = static_cast<uint8_t *>(malloc(step_mem()));
    memmove(steps, source.steps, step_mem());
    if (source.offsets != nullptr) {
      offsets = new EdgeOffset[stepcount];
      memcpy(offsets, source.offsets, stepcount * sizeof(*offsets));
    }
  }
  return *this;
}

/**
 * Helper for ComputeBinaryOffsets. Increments pos, dir_counts, pos_totals
 * by the step, increment, and vertical step ? x : y position * increment
 * at step s Mod stepcount respectively. Used to add or subtract the
 * direction and position to/from accumulators of a small neighbourhood.
 */
void C_OUTLINE::increment_step(int s, int increment, ICOORD* pos,
                               int* dir_counts, int* pos_totals) const {
  int step_index = Modulo(s, stepcount);
  int dir_index = chain_code(step_index);
  dir_counts[dir_index] += increment;
  ICOORD step_vec = step(step_index);
  if (step_vec.x() == 0)
    pos_totals[dir_index] += pos->x() * increment;
  else
    pos_totals[dir_index] += pos->y() * increment;
  *pos += step_vec;
}

ICOORD C_OUTLINE::chain_step(int chaindir) {
  return step_coords[chaindir % 4];
}

} // namespace tesseract