summaryrefslogtreecommitdiff
blob: e9edbbafcab79b0383543e1977e2a23610f9ffa4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
/******************************************************************************
 *
 * File:         trie.cpp  (Formerly trie.c)
 * Description:  Functions to build a trie data structure.
 * Author:       Mark Seaman, OCR Technology
 *
 * (c) Copyright 1987, Hewlett-Packard Company.
 ** Licensed under the Apache License, Version 2.0 (the "License");
 ** you may not use this file except in compliance with the License.
 ** You may obtain a copy of the License at
 ** http://www.apache.org/licenses/LICENSE-2.0
 ** Unless required by applicable law or agreed to in writing, software
 ** distributed under the License is distributed on an "AS IS" BASIS,
 ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 ** See the License for the specific language governing permissions and
 ** limitations under the License.
 *
 *****************************************************************************/
/*----------------------------------------------------------------------
              I n c l u d e s
----------------------------------------------------------------------*/

#include "trie.h"

#include "dawg.h"
#include "dict.h"
#include "genericvector.h"
#include "helpers.h"
#include "kdpair.h"

namespace tesseract {

const char kDoNotReverse[] = "RRP_DO_NO_REVERSE";
const char kReverseIfHasRTL[] = "RRP_REVERSE_IF_HAS_RTL";
const char kForceReverse[] = "RRP_FORCE_REVERSE";

const char * const RTLReversePolicyNames[] = {
  kDoNotReverse,
  kReverseIfHasRTL,
  kForceReverse
};

const char Trie::kAlphaPatternUnicode[] = "\u2000";
const char Trie::kDigitPatternUnicode[] = "\u2001";
const char Trie::kAlphanumPatternUnicode[] = "\u2002";
const char Trie::kPuncPatternUnicode[] = "\u2003";
const char Trie::kLowerPatternUnicode[] = "\u2004";
const char Trie::kUpperPatternUnicode[] = "\u2005";

const char *Trie::get_reverse_policy_name(RTLReversePolicy reverse_policy) {
  return RTLReversePolicyNames[reverse_policy];
}

// Reset the Trie to empty.
void Trie::clear() {
  nodes_.delete_data_pointers();
  nodes_.clear();
  root_back_freelist_.clear();
  num_edges_ = 0;
  new_dawg_node();  // Need to allocate node 0.
}

bool Trie::edge_char_of(NODE_REF node_ref, NODE_REF next_node,
                        int direction, bool word_end, UNICHAR_ID unichar_id,
                        EDGE_RECORD **edge_ptr, EDGE_INDEX *edge_index) const {
  if (debug_level_ == 3) {
    tprintf("edge_char_of() given node_ref " REFFORMAT " next_node " REFFORMAT
            " direction %d word_end %d unichar_id %d, exploring node:\n",
            node_ref, next_node, direction, word_end, unichar_id);
    if (node_ref != NO_EDGE) {
      print_node(node_ref, nodes_[node_ref]->forward_edges.size());
    }
  }
  if (node_ref == NO_EDGE) return false;
  assert(node_ref < nodes_.size());
  EDGE_VECTOR &vec = (direction == FORWARD_EDGE) ?
    nodes_[node_ref]->forward_edges : nodes_[node_ref]->backward_edges;
  int vec_size = vec.size();
  if (node_ref == 0 && direction == FORWARD_EDGE) {  // binary search
    EDGE_INDEX start = 0;
    EDGE_INDEX end = vec_size - 1;
    EDGE_INDEX k;
    int compare;
    while (start <= end) {
      k = (start + end) >> 1;  // (start + end) / 2
      compare = given_greater_than_edge_rec(next_node, word_end,
                                            unichar_id, vec[k]);
      if (compare == 0) {  // given == vec[k]
        *edge_ptr = &(vec[k]);
        *edge_index = k;
        return true;
      } else if (compare == 1) {  // given > vec[k]
        start = k + 1;
      } else {  // given < vec[k]
        end = k - 1;
      }
    }
  } else {  // linear search
    for (int i = 0; i < vec_size; ++i) {
      EDGE_RECORD &edge_rec = vec[i];
      if (edge_rec_match(next_node, word_end, unichar_id,
                         next_node_from_edge_rec(edge_rec),
                         end_of_word_from_edge_rec(edge_rec),
                         unichar_id_from_edge_rec(edge_rec))) {
        *edge_ptr = &(edge_rec);
        *edge_index = i;
        return true;
      }
    }
  }
  return false;  // not found
}

bool Trie::add_edge_linkage(NODE_REF node1, NODE_REF node2, bool marker_flag,
                            int direction, bool word_end,
                            UNICHAR_ID unichar_id) {
  EDGE_VECTOR *vec = (direction == FORWARD_EDGE) ?
    &(nodes_[node1]->forward_edges) : &(nodes_[node1]->backward_edges);
  int search_index;
  if (node1 == 0 && direction == FORWARD_EDGE) {
    search_index = 0;  // find the index to make the add sorted
    while (search_index < vec->size() &&
           given_greater_than_edge_rec(node2, word_end, unichar_id,
                                       (*vec)[search_index]) == 1) {
      search_index++;
    }
  } else {
    search_index = vec->size();  // add is unsorted, so index does not matter
  }
  EDGE_RECORD edge_rec;
  link_edge(&edge_rec, node2, marker_flag, direction, word_end, unichar_id);
  if (node1 == 0 && direction == BACKWARD_EDGE &&
      !root_back_freelist_.empty()) {
    EDGE_INDEX edge_index = root_back_freelist_.pop_back();
    (*vec)[edge_index] = edge_rec;
  } else if (search_index < vec->size()) {
    vec->insert(edge_rec, search_index);
  } else {
    vec->push_back(edge_rec);
  }
  if (debug_level_ > 1) {
    tprintf("new edge in nodes_[" REFFORMAT "]: ", node1);
    print_edge_rec(edge_rec);
    tprintf("\n");
  }
  num_edges_++;
  return true;
}

void Trie::add_word_ending(EDGE_RECORD *edge_ptr,
                           NODE_REF the_next_node,
                           bool marker_flag,
                           UNICHAR_ID unichar_id) {
  EDGE_RECORD *back_edge_ptr;
  EDGE_INDEX back_edge_index;
  ASSERT_HOST(edge_char_of(the_next_node, NO_EDGE, BACKWARD_EDGE, false,
                           unichar_id, &back_edge_ptr, &back_edge_index));
  if (marker_flag) {
    *back_edge_ptr |= (MARKER_FLAG << flag_start_bit_);
    *edge_ptr |= (MARKER_FLAG << flag_start_bit_);
  }
  // Mark both directions as end of word.
  *back_edge_ptr |= (WERD_END_FLAG << flag_start_bit_);
  *edge_ptr |= (WERD_END_FLAG << flag_start_bit_);
}

bool Trie::add_word_to_dawg(const WERD_CHOICE &word,
                            const GenericVector<bool> *repetitions) {
  if (word.length() <= 0) return false;  // can't add empty words
  if (repetitions != nullptr) ASSERT_HOST(repetitions->size() == word.length());
  // Make sure the word does not contain invalid unchar ids.
  for (int i = 0; i < word.length(); ++i) {
    if (word.unichar_id(i) < 0 ||
        word.unichar_id(i) >= unicharset_size_) return false;
  }

  EDGE_RECORD *edge_ptr;
  NODE_REF last_node = 0;
  NODE_REF the_next_node;
  bool marker_flag = false;
  EDGE_INDEX edge_index;
  int i;
  int32_t still_finding_chars = true;
  int32_t word_end = false;
  bool  add_failed = false;
  bool found;

  if (debug_level_ > 1) word.print("\nAdding word: ");

  UNICHAR_ID unichar_id;
  for (i = 0; i < word.length() - 1; ++i) {
    unichar_id = word.unichar_id(i);
    marker_flag = (repetitions != nullptr) ? (*repetitions)[i] : false;
    if (debug_level_ > 1) tprintf("Adding letter %d\n", unichar_id);
    if (still_finding_chars) {
      found = edge_char_of(last_node, NO_EDGE, FORWARD_EDGE, word_end,
                           unichar_id, &edge_ptr, &edge_index);
      if (found && debug_level_ > 1) {
        tprintf("exploring edge " REFFORMAT " in node " REFFORMAT "\n",
                edge_index, last_node);
      }
      if (!found) {
        still_finding_chars = false;
      } else if (next_node_from_edge_rec(*edge_ptr) == 0) {
        // We hit the end of an existing word, but the new word is longer.
        // In this case we have to disconnect the existing word from the
        // backwards root node, mark the current position as end-of-word
        // and add new nodes for the increased length. Disconnecting the
        // existing word from the backwards root node requires a linear
        // search, so it is much faster to add the longest words first,
        // to avoid having to come here.
        word_end = true;
        still_finding_chars = false;
        remove_edge(last_node, 0, word_end, unichar_id);
      } else {
        // We have to add a new branch here for the new word.
        if (marker_flag) set_marker_flag_in_edge_rec(edge_ptr);
        last_node = next_node_from_edge_rec(*edge_ptr);
      }
    }
    if (!still_finding_chars) {
      the_next_node = new_dawg_node();
      if (debug_level_ > 1)
        tprintf("adding node " REFFORMAT "\n", the_next_node);
      if (the_next_node == 0) {
        add_failed = true;
        break;
      }
      if (!add_new_edge(last_node, the_next_node,
                        marker_flag, word_end, unichar_id)) {
        add_failed = true;
        break;
      }
      word_end = false;
      last_node = the_next_node;
    }
  }
  the_next_node = 0;
  unichar_id = word.unichar_id(i);
  marker_flag = (repetitions != nullptr) ? (*repetitions)[i] : false;
  if (debug_level_ > 1) tprintf("Adding letter %d\n", unichar_id);
  if (still_finding_chars &&
      edge_char_of(last_node, NO_EDGE, FORWARD_EDGE, false,
                   unichar_id, &edge_ptr, &edge_index)) {
    // An extension of this word already exists in the trie, so we
    // only have to add the ending flags in both directions.
    add_word_ending(edge_ptr, next_node_from_edge_rec(*edge_ptr),
                    marker_flag, unichar_id);
  } else {
    // Add a link to node 0. All leaves connect to node 0 so the back links can
    // be used in reduction to a dawg. This root backward node has one edge
    // entry for every word, (except prefixes of longer words) so it is huge.
    if (!add_failed &&
        !add_new_edge(last_node, the_next_node, marker_flag, true, unichar_id))
      add_failed = true;
  }
  if (add_failed) {
    tprintf("Re-initializing document dictionary...\n");
    clear();
    return false;
  } else {
    return true;
  }
}

NODE_REF Trie::new_dawg_node() {
  auto *node = new TRIE_NODE_RECORD();
  nodes_.push_back(node);
  return nodes_.size() - 1;
}

bool Trie::read_and_add_word_list(const char *filename,
                                  const UNICHARSET &unicharset,
                                  Trie::RTLReversePolicy reverse_policy) {
  std::vector<STRING> word_list;
  if (!read_word_list(filename, &word_list)) return false;
  std::sort(word_list.begin(), word_list.end(), [](auto &s1, auto &s2) {
      return s1.size() > s2.size();
  });
  return add_word_list(word_list, unicharset, reverse_policy);
}

bool Trie::read_word_list(const char *filename,
                          std::vector<STRING>* words) {
  FILE *word_file;
  char line_str[CHARS_PER_LINE];
  int  word_count = 0;

  word_file = fopen(filename, "rb");
  if (word_file == nullptr) return false;

  while (fgets(line_str, sizeof(line_str), word_file) != nullptr) {
    chomp_string(line_str);  // remove newline
    STRING word_str(line_str);
    ++word_count;
    if (debug_level_ && word_count % 10000 == 0)
      tprintf("Read %d words so far\n", word_count);
    words->push_back(word_str);
  }
  if (debug_level_)
    tprintf("Read %d words total.\n", word_count);
  fclose(word_file);
  return true;
}

bool Trie::add_word_list(const std::vector<STRING> &words,
                         const UNICHARSET &unicharset,
                         Trie::RTLReversePolicy reverse_policy) {
  for (int i = 0; i < words.size(); ++i) {
    WERD_CHOICE word(words[i].c_str(), unicharset);
    if (word.length() == 0 || word.contains_unichar_id(INVALID_UNICHAR_ID))
      continue;
    if ((reverse_policy == RRP_REVERSE_IF_HAS_RTL &&
         word.has_rtl_unichar_id()) ||
        reverse_policy == RRP_FORCE_REVERSE) {
      word.reverse_and_mirror_unichar_ids();
    }
    if (!word_in_dawg(word)) {
      add_word_to_dawg(word);
      if (!word_in_dawg(word)) {
        tprintf("Error: word '%s' not in DAWG after adding it\n",
                words[i].c_str());
        return false;
      }
    }
  }
  return true;
}

void Trie::initialize_patterns(UNICHARSET *unicharset) {
  unicharset->unichar_insert(kAlphaPatternUnicode);
  alpha_pattern_ = unicharset->unichar_to_id(kAlphaPatternUnicode);
  unicharset->unichar_insert(kDigitPatternUnicode);
  digit_pattern_ = unicharset->unichar_to_id(kDigitPatternUnicode);
  unicharset->unichar_insert(kAlphanumPatternUnicode);
  alphanum_pattern_ = unicharset->unichar_to_id(kAlphanumPatternUnicode);
  unicharset->unichar_insert(kPuncPatternUnicode);
  punc_pattern_ = unicharset->unichar_to_id(kPuncPatternUnicode);
  unicharset->unichar_insert(kLowerPatternUnicode);
  lower_pattern_ = unicharset->unichar_to_id(kLowerPatternUnicode);
  unicharset->unichar_insert(kUpperPatternUnicode);
  upper_pattern_ = unicharset->unichar_to_id(kUpperPatternUnicode);
  initialized_patterns_ = true;
  unicharset_size_ = unicharset->size();
}

void Trie::unichar_id_to_patterns(UNICHAR_ID unichar_id,
                                  const UNICHARSET &unicharset,
                                  GenericVector<UNICHAR_ID> *vec) const {
  bool is_alpha = unicharset.get_isalpha(unichar_id);
  if (is_alpha) {
    vec->push_back(alpha_pattern_);
    vec->push_back(alphanum_pattern_);
    if (unicharset.get_islower(unichar_id)) {
      vec->push_back(lower_pattern_);
    } else if (unicharset.get_isupper(unichar_id)) {
      vec->push_back(upper_pattern_);
    }
  }
  if (unicharset.get_isdigit(unichar_id)) {
    vec->push_back(digit_pattern_);
    if (!is_alpha) vec->push_back(alphanum_pattern_);
  }
  if (unicharset.get_ispunctuation(unichar_id)) {
    vec->push_back(punc_pattern_);
  }
}

UNICHAR_ID Trie::character_class_to_pattern(char ch) {
  if (ch == 'c') {
    return alpha_pattern_;
  } else if (ch == 'd') {
    return digit_pattern_;
  } else if (ch == 'n') {
    return alphanum_pattern_;
  } else if (ch == 'p') {
    return punc_pattern_;
  } else if (ch == 'a') {
    return lower_pattern_;
  } else if (ch == 'A') {
    return upper_pattern_;
  } else {
    return INVALID_UNICHAR_ID;
  }
}

bool Trie::read_pattern_list(const char *filename,
                             const UNICHARSET &unicharset) {
  if (!initialized_patterns_) {
    tprintf("please call initialize_patterns() before read_pattern_list()\n");
    return false;
  }

  FILE *pattern_file = fopen(filename, "rb");
  if (pattern_file == nullptr) {
    tprintf("Error opening pattern file %s\n", filename);
    return false;
  }

  int pattern_count = 0;
  char string[CHARS_PER_LINE];
  while (fgets(string, CHARS_PER_LINE, pattern_file) != nullptr) {
    chomp_string(string);  // remove newline
    // Parse the pattern and construct a unichar id vector.
    // Record the number of repetitions of each unichar in the parallel vector.
    WERD_CHOICE word(&unicharset);
    GenericVector<bool> repetitions_vec;
    const char *str_ptr = string;
    int step = unicharset.step(str_ptr);
    bool failed = false;
    while (step > 0) {
      UNICHAR_ID curr_unichar_id = INVALID_UNICHAR_ID;
      if (step == 1 && *str_ptr == '\\') {
        ++str_ptr;
        if (*str_ptr == '\\') {  // regular '\' unichar that was escaped
          curr_unichar_id = unicharset.unichar_to_id(str_ptr, step);
        } else {
          if (word.length() < kSaneNumConcreteChars) {
            tprintf("Please provide at least %d concrete characters at the"
                    " beginning of the pattern\n", kSaneNumConcreteChars);
            failed = true;
            break;
          }
          // Parse character class from expression.
          curr_unichar_id = character_class_to_pattern(*str_ptr);
        }
      } else {
        curr_unichar_id = unicharset.unichar_to_id(str_ptr, step);
      }
      if (curr_unichar_id ==  INVALID_UNICHAR_ID) {
        failed = true;
        break;  // failed to parse this pattern
      }
      word.append_unichar_id(curr_unichar_id, 1, 0.0, 0.0);
      repetitions_vec.push_back(false);
      str_ptr += step;
      step = unicharset.step(str_ptr);
      // Check if there is a repetition pattern specified after this unichar.
      if (step == 1 && *str_ptr == '\\' && *(str_ptr+1) == '*') {
        repetitions_vec[repetitions_vec.size()-1] = true;
        str_ptr += 2;
        step = unicharset.step(str_ptr);
      }
    }
    if (failed) {
      tprintf("Invalid user pattern %s\n", string);
      continue;
    }
    // Insert the pattern into the trie.
    if (debug_level_ > 2) {
      tprintf("Inserting expanded user pattern %s\n",
              word.debug_string().c_str());
    }
    if (!this->word_in_dawg(word)) {
      this->add_word_to_dawg(word, &repetitions_vec);
      if (!this->word_in_dawg(word)) {
        tprintf("Error: failed to insert pattern '%s'\n", string);
      }
    }
    ++pattern_count;
  }
  if (debug_level_) {
    tprintf("Read %d valid patterns from %s\n", pattern_count, filename);
  }
  fclose(pattern_file);
  return true;
}

void Trie::remove_edge_linkage(NODE_REF node1, NODE_REF node2, int direction,
                               bool word_end, UNICHAR_ID unichar_id) {
  EDGE_RECORD *edge_ptr = nullptr;
  EDGE_INDEX edge_index = 0;
  ASSERT_HOST(edge_char_of(node1, node2, direction, word_end,
                           unichar_id, &edge_ptr, &edge_index));
  if (debug_level_ > 1) {
    tprintf("removed edge in nodes_[" REFFORMAT "]: ", node1);
    print_edge_rec(*edge_ptr);
    tprintf("\n");
  }
  if (direction == FORWARD_EDGE) {
    nodes_[node1]->forward_edges.remove(edge_index);
  } else if (node1 == 0) {
    KillEdge(&nodes_[node1]->backward_edges[edge_index]);
    root_back_freelist_.push_back(edge_index);
  } else {
    nodes_[node1]->backward_edges.remove(edge_index);
  }
  --num_edges_;
}

// Some optimizations employed in add_word_to_dawg and trie_to_dawg:
// 1 Avoid insertion sorting or bubble sorting the tail root node
//   (back links on node 0, a list of all the leaves.). The node is
//   huge, and sorting it with n^2 time is terrible.
// 2 Avoid using GenericVector::remove on the tail root node.
//   (a) During add of words to the trie, zero-out the unichars and
//       keep a freelist of spaces to re-use.
//   (b) During reduction, just zero-out the unichars of deleted back
//       links, skipping zero entries while searching.
// 3 Avoid linear search of the tail root node. This has to be done when
//   a suffix is added to an existing word. Adding words by decreasing
//   length avoids this problem entirely. Words can still be added in
//   any order, but it is faster to add the longest first.
SquishedDawg *Trie::trie_to_dawg() {
  root_back_freelist_.clear();  // Will be invalided by trie_to_dawg.
  if (debug_level_ > 2) {
    print_all("Before reduction:", MAX_NODE_EDGES_DISPLAY);
  }
  auto reduced_nodes = new bool[nodes_.size()];
  for (int i = 0; i < nodes_.size(); i++) reduced_nodes[i] = false;
  this->reduce_node_input(0, reduced_nodes);
  delete[] reduced_nodes;

  if (debug_level_ > 2) {
    print_all("After reduction:", MAX_NODE_EDGES_DISPLAY);
  }
  // Build a translation map from node indices in nodes_ vector to
  // their target indices in EDGE_ARRAY.
  auto *node_ref_map = new NODE_REF[nodes_.size() + 1];
  int i, j;
  node_ref_map[0] = 0;
  for (i = 0; i < nodes_.size(); ++i) {
    node_ref_map[i+1] = node_ref_map[i] + nodes_[i]->forward_edges.size();
  }
  int num_forward_edges = node_ref_map[i];

  // Convert nodes_ vector into EDGE_ARRAY translating the next node references
  // in edges using node_ref_map. Empty nodes and backward edges are dropped.
  auto edge_array = new EDGE_RECORD[num_forward_edges];
  EDGE_ARRAY edge_array_ptr = edge_array;
  for (i = 0; i < nodes_.size(); ++i) {
    TRIE_NODE_RECORD *node_ptr = nodes_[i];
    int end = node_ptr->forward_edges.size();
    for (j = 0; j < end; ++j) {
      EDGE_RECORD &edge_rec = node_ptr->forward_edges[j];
      NODE_REF node_ref = next_node_from_edge_rec(edge_rec);
      ASSERT_HOST(node_ref < nodes_.size());
      UNICHAR_ID unichar_id = unichar_id_from_edge_rec(edge_rec);
      link_edge(edge_array_ptr, node_ref_map[node_ref], false, FORWARD_EDGE,
                end_of_word_from_edge_rec(edge_rec), unichar_id);
      if (j == end - 1) set_marker_flag_in_edge_rec(edge_array_ptr);
      ++edge_array_ptr;
    }
  }
  delete[] node_ref_map;

  return new SquishedDawg(edge_array, num_forward_edges, type_, lang_,
                          perm_, unicharset_size_, debug_level_);
}

bool Trie::eliminate_redundant_edges(NODE_REF node,
                                     const EDGE_RECORD &edge1,
                                     const EDGE_RECORD &edge2) {
  if (debug_level_ > 1) {
    tprintf("\nCollapsing node %" PRIi64 ":\n", node);
    print_node(node, MAX_NODE_EDGES_DISPLAY);
    tprintf("Candidate edges: ");
    print_edge_rec(edge1);
    tprintf(", ");
    print_edge_rec(edge2);
    tprintf("\n\n");
  }
  NODE_REF next_node1 = next_node_from_edge_rec(edge1);
  NODE_REF next_node2 = next_node_from_edge_rec(edge2);
  TRIE_NODE_RECORD *next_node2_ptr = nodes_[next_node2];
  // Translate all edges going to/from next_node2 to go to/from next_node1.
  EDGE_RECORD *edge_ptr = nullptr;
  EDGE_INDEX edge_index;
  int i;
  // The backward link in node to next_node2 will be zeroed out by the caller.
  // Copy all the backward links in next_node2 to node next_node1
  for (i = 0; i < next_node2_ptr->backward_edges.size(); ++i) {
    const EDGE_RECORD &bkw_edge = next_node2_ptr->backward_edges[i];
    NODE_REF curr_next_node = next_node_from_edge_rec(bkw_edge);
    UNICHAR_ID curr_unichar_id = unichar_id_from_edge_rec(bkw_edge);
    int curr_word_end = end_of_word_from_edge_rec(bkw_edge);
    bool marker_flag = marker_flag_from_edge_rec(bkw_edge);
    add_edge_linkage(next_node1, curr_next_node, marker_flag, BACKWARD_EDGE,
                     curr_word_end, curr_unichar_id);
    // Relocate the corresponding forward edge in curr_next_node
    ASSERT_HOST(edge_char_of(curr_next_node, next_node2, FORWARD_EDGE,
                             curr_word_end, curr_unichar_id,
                             &edge_ptr, &edge_index));
    set_next_node_in_edge_rec(edge_ptr, next_node1);
  }
  int next_node2_num_edges = (next_node2_ptr->forward_edges.size() +
                              next_node2_ptr->backward_edges.size());
  if (debug_level_ > 1) {
    tprintf("removed %d edges from node " REFFORMAT "\n",
            next_node2_num_edges, next_node2);
  }
  next_node2_ptr->forward_edges.clear();
  next_node2_ptr->backward_edges.clear();
  num_edges_ -= next_node2_num_edges;
  return true;
}

bool Trie::reduce_lettered_edges(EDGE_INDEX edge_index,
                                 UNICHAR_ID unichar_id,
                                 NODE_REF node,
                                 EDGE_VECTOR* backward_edges,
                                 NODE_MARKER reduced_nodes) {
  if (debug_level_ > 1)
    tprintf("reduce_lettered_edges(edge=" REFFORMAT ")\n", edge_index);
  // Compare each of the edge pairs with the given unichar_id.
  bool did_something = false;
  for (int i = edge_index; i < backward_edges->size() - 1; ++i) {
    // Find the first edge that can be eliminated.
    UNICHAR_ID curr_unichar_id = INVALID_UNICHAR_ID;
    while (i < backward_edges->size()) {
      if (!DeadEdge((*backward_edges)[i])) {
        curr_unichar_id = unichar_id_from_edge_rec((*backward_edges)[i]);
        if (curr_unichar_id != unichar_id) return did_something;
        if (can_be_eliminated((*backward_edges)[i])) break;
      }
      ++i;
    }
    if (i == backward_edges->size()) break;
    const EDGE_RECORD &edge_rec = (*backward_edges)[i];
    // Compare it to the rest of the edges with the given unichar_id.
    for (int j = i + 1; j < backward_edges->size(); ++j) {
      const EDGE_RECORD &next_edge_rec = (*backward_edges)[j];
      if (DeadEdge(next_edge_rec)) continue;
      UNICHAR_ID next_id = unichar_id_from_edge_rec(next_edge_rec);
      if (next_id != unichar_id) break;
      if (end_of_word_from_edge_rec(next_edge_rec) ==
          end_of_word_from_edge_rec(edge_rec) &&
          can_be_eliminated(next_edge_rec) &&
          eliminate_redundant_edges(node, edge_rec, next_edge_rec)) {
        reduced_nodes[next_node_from_edge_rec(edge_rec)] = false;
        did_something = true;
        KillEdge(&(*backward_edges)[j]);
      }
    }
  }
  return did_something;
}

void Trie::sort_edges(EDGE_VECTOR *edges) {
  int num_edges = edges->size();
  if (num_edges <= 1) return;
  GenericVector<KDPairInc<UNICHAR_ID, EDGE_RECORD> > sort_vec;
  sort_vec.reserve(num_edges);
  for (int i = 0; i < num_edges; ++i) {
    sort_vec.push_back(KDPairInc<UNICHAR_ID, EDGE_RECORD>(
        unichar_id_from_edge_rec((*edges)[i]), (*edges)[i]));
  }
  sort_vec.sort();
  for (int i = 0; i < num_edges; ++i)
    (*edges)[i] = sort_vec[i].data();
}

void Trie::reduce_node_input(NODE_REF node,
                             NODE_MARKER reduced_nodes) {
  EDGE_VECTOR &backward_edges = nodes_[node]->backward_edges;
  sort_edges(&backward_edges);
  if (debug_level_ > 1) {
    tprintf("reduce_node_input(node=" REFFORMAT ")\n", node);
    print_node(node, MAX_NODE_EDGES_DISPLAY);
  }

  EDGE_INDEX edge_index = 0;
  while (edge_index < backward_edges.size()) {
    if (DeadEdge(backward_edges[edge_index])) continue;
    UNICHAR_ID unichar_id =
      unichar_id_from_edge_rec(backward_edges[edge_index]);
    while (reduce_lettered_edges(edge_index, unichar_id, node,
                                 &backward_edges, reduced_nodes));
    while (++edge_index < backward_edges.size()) {
      UNICHAR_ID id = unichar_id_from_edge_rec(backward_edges[edge_index]);
      if (!DeadEdge(backward_edges[edge_index]) && id != unichar_id) break;
    }
  }
  reduced_nodes[node] = true;  // mark as reduced

  if (debug_level_ > 1) {
    tprintf("Node " REFFORMAT " after reduction:\n", node);
    print_node(node, MAX_NODE_EDGES_DISPLAY);
  }

  for (int i = 0; i < backward_edges.size(); ++i) {
    if (DeadEdge(backward_edges[i])) continue;
    NODE_REF next_node = next_node_from_edge_rec(backward_edges[i]);
    if (next_node != 0 && !reduced_nodes[next_node]) {
      reduce_node_input(next_node, reduced_nodes);
    }
  }
}

void Trie::print_node(NODE_REF node, int max_num_edges) const {
  if (node == NO_EDGE) return;  // nothing to print
  TRIE_NODE_RECORD *node_ptr = nodes_[node];
  int num_fwd = node_ptr->forward_edges.size();
  int num_bkw = node_ptr->backward_edges.size();
  EDGE_VECTOR *vec;
  for (int dir = 0; dir < 2; ++dir) {
    if (dir == 0) {
      vec = &(node_ptr->forward_edges);
      tprintf(REFFORMAT " (%d %d): ", node, num_fwd, num_bkw);
    } else {
      vec = &(node_ptr->backward_edges);
      tprintf("\t");
    }
    int i;
    for (i = 0; (dir == 0 ? i < num_fwd : i < num_bkw) &&
         i < max_num_edges; ++i) {
      if (DeadEdge((*vec)[i])) continue;
      print_edge_rec((*vec)[i]);
      tprintf(" ");
    }
    if (dir == 0 ? i < num_fwd : i < num_bkw) tprintf("...");
    tprintf("\n");
  }
}

}  // namespace tesseract