summaryrefslogtreecommitdiff
blob: 7b4fa9412dee48365e7e5cc07020121e4507ff3b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
// Copyright 2010 Google Inc. All Rights Reserved.
// Author: rays@google.com (Ray Smith)
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
///////////////////////////////////////////////////////////////////////

#ifdef HAVE_CONFIG_H
#include "config_auto.h"
#endif

#include <algorithm>

#include "trainingsampleset.h"
#include "allheaders.h"
#include "boxread.h"
#include "fontinfo.h"
#include "indexmapbidi.h"
#include "intfeaturedist.h"
#include "intfeaturemap.h"
#include "intfeaturespace.h"
#include "shapetable.h"
#include "trainingsample.h"
#include "unicity_table.h"

namespace tesseract {

const int kTestChar = -1;  // 37;
// Max number of distances to compute the squared way
const int kSquareLimit = 25;
// Prime numbers for subsampling distances.
const int kPrime1 = 17;
const int kPrime2 = 13;

TrainingSampleSet::FontClassInfo::FontClassInfo()
  : num_raw_samples(0), canonical_sample(-1), canonical_dist(0.0f) {
}

// Writes to the given file. Returns false in case of error.
bool TrainingSampleSet::FontClassInfo::Serialize(FILE* fp) const {
  if (fwrite(&num_raw_samples, sizeof(num_raw_samples), 1, fp) != 1)
    return false;
  if (fwrite(&canonical_sample, sizeof(canonical_sample), 1, fp) != 1)
    return false;
  if (fwrite(&canonical_dist, sizeof(canonical_dist), 1, fp) != 1) return false;
  if (!samples.Serialize(fp)) return false;
  return true;
}
// Reads from the given file. Returns false in case of error.
// If swap is true, assumes a big/little-endian swap is needed.
bool TrainingSampleSet::FontClassInfo::DeSerialize(bool swap, FILE* fp) {
  if (fread(&num_raw_samples, sizeof(num_raw_samples), 1, fp) != 1)
    return false;
  if (fread(&canonical_sample, sizeof(canonical_sample), 1, fp) != 1)
    return false;
  if (fread(&canonical_dist, sizeof(canonical_dist), 1, fp) != 1) return false;
  if (!samples.DeSerialize(swap, fp)) return false;
  if (swap) {
    ReverseN(&num_raw_samples, sizeof(num_raw_samples));
    ReverseN(&canonical_sample, sizeof(canonical_sample));
    ReverseN(&canonical_dist, sizeof(canonical_dist));
  }
  return true;
}

TrainingSampleSet::TrainingSampleSet(const FontInfoTable& font_table)
  : num_raw_samples_(0), unicharset_size_(0),
    font_class_array_(nullptr), fontinfo_table_(font_table) {
}

TrainingSampleSet::~TrainingSampleSet() {
  delete font_class_array_;
}

// Writes to the given file. Returns false in case of error.
bool TrainingSampleSet::Serialize(FILE* fp) const {
  if (!samples_.Serialize(fp)) return false;
  if (!unicharset_.save_to_file(fp)) return false;
  if (!font_id_map_.Serialize(fp)) return false;
  int8_t not_null = font_class_array_ != nullptr;
  if (fwrite(&not_null, sizeof(not_null), 1, fp) != 1) return false;
  if (not_null) {
    if (!font_class_array_->SerializeClasses(fp)) return false;
  }
  return true;
}

// Reads from the given file. Returns false in case of error.
// If swap is true, assumes a big/little-endian swap is needed.
bool TrainingSampleSet::DeSerialize(bool swap, FILE* fp) {
  if (!samples_.DeSerialize(swap, fp)) return false;
  num_raw_samples_ = samples_.size();
  if (!unicharset_.load_from_file(fp)) return false;
  if (!font_id_map_.DeSerialize(swap, fp)) return false;
  delete font_class_array_;
  font_class_array_ = nullptr;
  int8_t not_null;
  if (fread(&not_null, sizeof(not_null), 1, fp) != 1) return false;
  if (not_null) {
    FontClassInfo empty;
    font_class_array_ = new GENERIC_2D_ARRAY<FontClassInfo >(1, 1 , empty);
    if (!font_class_array_->DeSerializeClasses(swap, fp)) return false;
  }
  unicharset_size_ = unicharset_.size();
  return true;
}

// Load an initial unicharset, or set one up if the file cannot be read.
void TrainingSampleSet::LoadUnicharset(const char* filename) {
  if (!unicharset_.load_from_file(filename)) {
    tprintf("Failed to load unicharset from file %s\n"
            "Building unicharset from scratch...\n",
            filename);
    unicharset_.clear();
    // Add special characters as they were removed by the clear.
    UNICHARSET empty;
    unicharset_.AppendOtherUnicharset(empty);
  }
  unicharset_size_ = unicharset_.size();
}

// Adds a character sample to this sample set.
// If the unichar is not already in the local unicharset, it is added.
// Returns the unichar_id of the added sample, from the local unicharset.
int TrainingSampleSet::AddSample(const char* unichar, TrainingSample* sample) {
  if (!unicharset_.contains_unichar(unichar)) {
    unicharset_.unichar_insert(unichar);
    if (unicharset_.size() > MAX_NUM_CLASSES) {
      tprintf("Error: Size of unicharset in TrainingSampleSet::AddSample is "
              "greater than MAX_NUM_CLASSES\n");
      return -1;
    }
  }
  UNICHAR_ID char_id = unicharset_.unichar_to_id(unichar);
  AddSample(char_id, sample);
  return char_id;
}

// Adds a character sample to this sample set with the given unichar_id,
// which must correspond to the local unicharset (in this).
void TrainingSampleSet::AddSample(int unichar_id, TrainingSample* sample) {
  sample->set_class_id(unichar_id);
  samples_.push_back(sample);
  num_raw_samples_ = samples_.size();
  unicharset_size_ = unicharset_.size();
}

// Returns the number of samples for the given font,class pair.
// If randomize is true, returns the number of samples accessible
// with randomizing on. (Increases the number of samples if small.)
// OrganizeByFontAndClass must have been already called.
int TrainingSampleSet::NumClassSamples(int font_id, int class_id,
                                       bool randomize) const {
  ASSERT_HOST(font_class_array_ != nullptr);
  if (font_id < 0 || class_id < 0 ||
      font_id >= font_id_map_.SparseSize() || class_id >= unicharset_size_) {
    // There are no samples because the font or class doesn't exist.
    return 0;
  }
  int font_index = font_id_map_.SparseToCompact(font_id);
  if (font_index < 0)
    return 0;  // The font has no samples.
  if (randomize)
    return (*font_class_array_)(font_index, class_id).samples.size();
  else
    return (*font_class_array_)(font_index, class_id).num_raw_samples;
}

// Gets a sample by its index.
const TrainingSample* TrainingSampleSet::GetSample(int index) const {
  return samples_[index];
}

// Gets a sample by its font, class, index.
// OrganizeByFontAndClass must have been already called.
const TrainingSample* TrainingSampleSet::GetSample(int font_id, int class_id,
                                                   int index) const {
  ASSERT_HOST(font_class_array_ != nullptr);
  int font_index = font_id_map_.SparseToCompact(font_id);
  if (font_index < 0) return nullptr;
  int sample_index = (*font_class_array_)(font_index, class_id).samples[index];
  return samples_[sample_index];
}

// Get a sample by its font, class, index. Does not randomize.
// OrganizeByFontAndClass must have been already called.
TrainingSample* TrainingSampleSet::MutableSample(int font_id, int class_id,
                                                 int index) {
  ASSERT_HOST(font_class_array_ != nullptr);
  int font_index = font_id_map_.SparseToCompact(font_id);
  if (font_index < 0) return nullptr;
  int sample_index = (*font_class_array_)(font_index, class_id).samples[index];
  return samples_[sample_index];
}

// Returns a string debug representation of the given sample:
// font, unichar_str, bounding box, page.
STRING TrainingSampleSet::SampleToString(const TrainingSample& sample) const {
  STRING boxfile_str;
  MakeBoxFileStr(unicharset_.id_to_unichar(sample.class_id()),
                 sample.bounding_box(), sample.page_num(), &boxfile_str);
  return STRING(fontinfo_table_.get(sample.font_id()).name) + " " + boxfile_str;
}

// Gets the combined set of features used by all the samples of the given
// font/class combination.
const BitVector& TrainingSampleSet::GetCloudFeatures(
    int font_id, int class_id) const {
  int font_index = font_id_map_.SparseToCompact(font_id);
  ASSERT_HOST(font_index >= 0);
  return (*font_class_array_)(font_index, class_id).cloud_features;
}
// Gets the indexed features of the canonical sample of the given
// font/class combination.
const GenericVector<int>& TrainingSampleSet::GetCanonicalFeatures(
    int font_id, int class_id) const {
  int font_index = font_id_map_.SparseToCompact(font_id);
  ASSERT_HOST(font_index >= 0);
  return (*font_class_array_)(font_index, class_id).canonical_features;
}

// Returns the distance between the given UniCharAndFonts pair.
// If matched_fonts, only matching fonts, are considered, unless that yields
// the empty set.
// OrganizeByFontAndClass must have been already called.
float TrainingSampleSet::UnicharDistance(const UnicharAndFonts& uf1,
                                         const UnicharAndFonts& uf2,
                                         bool matched_fonts,
                                         const IntFeatureMap& feature_map) {
  int num_fonts1 = uf1.font_ids.size();
  int c1 = uf1.unichar_id;
  int num_fonts2 = uf2.font_ids.size();
  int c2 = uf2.unichar_id;
  double dist_sum = 0.0;
  int dist_count = 0;
  const bool debug = false;
  if (matched_fonts) {
    // Compute distances only where fonts match.
    for (int i = 0; i < num_fonts1; ++i) {
      int f1 = uf1.font_ids[i];
      for (int j = 0; j < num_fonts2; ++j) {
        int f2 = uf2.font_ids[j];
        if (f1 == f2) {
          dist_sum += ClusterDistance(f1, c1, f2, c2, feature_map);
          ++dist_count;
        }
      }
    }
  } else if (num_fonts1 * num_fonts2 <= kSquareLimit) {
    // Small enough sets to compute all the distances.
    for (int i = 0; i < num_fonts1; ++i) {
      int f1 = uf1.font_ids[i];
      for (int j = 0; j < num_fonts2; ++j) {
        int f2 = uf2.font_ids[j];
        dist_sum += ClusterDistance(f1, c1, f2, c2, feature_map);
        if (debug) {
            tprintf("Cluster dist %d %d %d %d = %g\n",
                    f1, c1, f2, c2,
                    ClusterDistance(f1, c1, f2, c2, feature_map));
        }
        ++dist_count;
      }
    }
  } else {
    // Subsample distances, using the largest set once, and stepping through
    // the smaller set so as to ensure that all the pairs are different.
    int increment = kPrime1 != num_fonts2 ? kPrime1 : kPrime2;
    int index = 0;
    int num_samples = std::max(num_fonts1, num_fonts2);
    for (int i = 0; i < num_samples; ++i, index += increment) {
      int f1 = uf1.font_ids[i % num_fonts1];
      int f2 = uf2.font_ids[index % num_fonts2];
      if (debug) {
          tprintf("Cluster dist %d %d %d %d = %g\n",
                  f1, c1, f2, c2, ClusterDistance(f1, c1, f2, c2, feature_map));
      }
      dist_sum += ClusterDistance(f1, c1, f2, c2, feature_map);
      ++dist_count;
    }
  }
  if (dist_count == 0) {
    if (matched_fonts)
      return UnicharDistance(uf1, uf2, false, feature_map);
    return 0.0f;
  }
  return dist_sum / dist_count;
}

// Returns the distance between the given pair of font/class pairs.
// Finds in cache or computes and caches.
// OrganizeByFontAndClass must have been already called.
float TrainingSampleSet::ClusterDistance(int font_id1, int class_id1,
                                         int font_id2, int class_id2,
                                         const IntFeatureMap& feature_map) {
  ASSERT_HOST(font_class_array_ != nullptr);
  int font_index1 = font_id_map_.SparseToCompact(font_id1);
  int font_index2 = font_id_map_.SparseToCompact(font_id2);
  if (font_index1 < 0 || font_index2 < 0)
    return 0.0f;
  FontClassInfo& fc_info = (*font_class_array_)(font_index1, class_id1);
  if (font_id1 == font_id2) {
    // Special case cache for speed.
    if (fc_info.unichar_distance_cache.size() == 0)
      fc_info.unichar_distance_cache.init_to_size(unicharset_size_, -1.0f);
    if (fc_info.unichar_distance_cache[class_id2] < 0) {
      // Distance has to be calculated.
      float result = ComputeClusterDistance(font_id1, class_id1,
                                            font_id2, class_id2,
                                            feature_map);
      fc_info.unichar_distance_cache[class_id2] = result;
      // Copy to the symmetric cache entry.
      FontClassInfo& fc_info2 = (*font_class_array_)(font_index2, class_id2);
      if (fc_info2.unichar_distance_cache.size() == 0)
        fc_info2.unichar_distance_cache.init_to_size(unicharset_size_, -1.0f);
      fc_info2.unichar_distance_cache[class_id1] = result;
    }
    return fc_info.unichar_distance_cache[class_id2];
  } else if (class_id1 == class_id2) {
    // Another special-case cache for equal class-id.
    if (fc_info.font_distance_cache.size() == 0)
      fc_info.font_distance_cache.init_to_size(font_id_map_.CompactSize(),
                                               -1.0f);
    if (fc_info.font_distance_cache[font_index2] < 0) {
      // Distance has to be calculated.
      float result = ComputeClusterDistance(font_id1, class_id1,
                                            font_id2, class_id2,
                                            feature_map);
      fc_info.font_distance_cache[font_index2] = result;
      // Copy to the symmetric cache entry.
      FontClassInfo& fc_info2 = (*font_class_array_)(font_index2, class_id2);
      if (fc_info2.font_distance_cache.size() == 0)
        fc_info2.font_distance_cache.init_to_size(font_id_map_.CompactSize(),
                                                  -1.0f);
      fc_info2.font_distance_cache[font_index1] = result;
    }
    return fc_info.font_distance_cache[font_index2];
  }
  // Both font and class are different. Linear search for class_id2/font_id2
  // in what is a hopefully short list of distances.
  int cache_index = 0;
  while (cache_index < fc_info.distance_cache.size() &&
         (fc_info.distance_cache[cache_index].unichar_id != class_id2 ||
          fc_info.distance_cache[cache_index].font_id != font_id2))
    ++cache_index;
  if (cache_index == fc_info.distance_cache.size()) {
    // Distance has to be calculated.
    float result = ComputeClusterDistance(font_id1, class_id1,
                                          font_id2, class_id2,
                                          feature_map);
    FontClassDistance fc_dist = { class_id2, font_id2, result };
    fc_info.distance_cache.push_back(fc_dist);
    // Copy to the symmetric cache entry. We know it isn't there already, as
    // we always copy to the symmetric entry.
    FontClassInfo& fc_info2 = (*font_class_array_)(font_index2, class_id2);
    fc_dist.unichar_id = class_id1;
    fc_dist.font_id = font_id1;
    fc_info2.distance_cache.push_back(fc_dist);
  }
  return fc_info.distance_cache[cache_index].distance;
}

// Computes the distance between the given pair of font/class pairs.
float TrainingSampleSet::ComputeClusterDistance(
    int font_id1, int class_id1, int font_id2, int class_id2,
    const IntFeatureMap& feature_map) const {
  int dist = ReliablySeparable(font_id1, class_id1, font_id2, class_id2,
                               feature_map, false);
  dist += ReliablySeparable(font_id2, class_id2, font_id1, class_id1,
                            feature_map, false);
  int denominator = GetCanonicalFeatures(font_id1, class_id1).size();
  denominator += GetCanonicalFeatures(font_id2, class_id2).size();
  return static_cast<float>(dist) / denominator;
}

// Helper to add a feature and its near neighbors to the good_features.
// levels indicates how many times to compute the offset features of what is
// already there. This is done by iteration rather than recursion.
static void AddNearFeatures(const IntFeatureMap& feature_map, int f, int levels,
                            GenericVector<int>* good_features) {
  int prev_num_features = 0;
  good_features->push_back(f);
  int num_features = 1;
  for (int level = 0; level < levels; ++level) {
    for (int i = prev_num_features; i < num_features; ++i) {
      int feature = (*good_features)[i];
      for (int dir = -kNumOffsetMaps; dir <= kNumOffsetMaps; ++dir) {
        if (dir == 0) continue;
        int f1 = feature_map.OffsetFeature(feature, dir);
        if (f1 >= 0) {
          good_features->push_back(f1);
        }
      }
    }
    prev_num_features = num_features;
    num_features = good_features->size();
  }
}

// Returns the number of canonical features of font/class 2 for which
// neither the feature nor any of its near neighbors occurs in the cloud
// of font/class 1. Each such feature is a reliable separation between
// the classes, ASSUMING that the canonical sample is sufficiently
// representative that every sample has a feature near that particular
// feature. To check that this is so on the fly would be prohibitively
// expensive, but it might be possible to pre-qualify the canonical features
// to include only those for which this assumption is true.
// ComputeCanonicalFeatures and ComputeCloudFeatures must have been called
// first, or the results will be nonsense.
int TrainingSampleSet::ReliablySeparable(int font_id1, int class_id1,
                                         int font_id2, int class_id2,
                                         const IntFeatureMap& feature_map,
                                         bool thorough) const {
  int result = 0;
  const TrainingSample* sample2 = GetCanonicalSample(font_id2, class_id2);
  if (sample2 == nullptr)
    return 0;  // There are no canonical features.
  const GenericVector<int>& canonical2 = GetCanonicalFeatures(font_id2,
                                                              class_id2);
  const BitVector& cloud1 = GetCloudFeatures(font_id1, class_id1);
  if (cloud1.size() == 0)
    return canonical2.size();  // There are no cloud features.

  // Find a canonical2 feature that is not in cloud1.
  for (int f = 0; f < canonical2.size(); ++f) {
    const int feature = canonical2[f];
    if (cloud1[feature])
      continue;
    // Gather the near neighbours of f.
    GenericVector<int> good_features;
    AddNearFeatures(feature_map, feature, 1, &good_features);
    // Check that none of the good_features are in the cloud.
    int i;
    for (i = 0; i < good_features.size(); ++i) {
      int good_f = good_features[i];
      if (cloud1[good_f]) {
        break;
      }
    }
    if (i < good_features.size())
       continue;  // Found one in the cloud.
    ++result;
  }
  return result;
}

// Returns the total index of the requested sample.
// OrganizeByFontAndClass must have been already called.
int TrainingSampleSet::GlobalSampleIndex(int font_id, int class_id,
                                         int index) const {
  ASSERT_HOST(font_class_array_ != nullptr);
  int font_index = font_id_map_.SparseToCompact(font_id);
  if (font_index < 0) return -1;
  return (*font_class_array_)(font_index, class_id).samples[index];
}

// Gets the canonical sample for the given font, class pair.
// ComputeCanonicalSamples must have been called first.
const TrainingSample* TrainingSampleSet::GetCanonicalSample(
    int font_id, int class_id) const {
  ASSERT_HOST(font_class_array_ != nullptr);
  int font_index = font_id_map_.SparseToCompact(font_id);
  if (font_index < 0) return nullptr;
  const int sample_index = (*font_class_array_)(font_index,
                                          class_id).canonical_sample;
  return sample_index >= 0 ? samples_[sample_index] : nullptr;
}

// Gets the max distance for the given canonical sample.
// ComputeCanonicalSamples must have been called first.
float TrainingSampleSet::GetCanonicalDist(int font_id, int class_id) const {
  ASSERT_HOST(font_class_array_ != nullptr);
  int font_index = font_id_map_.SparseToCompact(font_id);
  if (font_index < 0) return 0.0f;
  if ((*font_class_array_)(font_index, class_id).canonical_sample >= 0)
    return (*font_class_array_)(font_index, class_id).canonical_dist;
  else
    return 0.0f;
}

// Generates indexed features for all samples with the supplied feature_space.
void TrainingSampleSet::IndexFeatures(const IntFeatureSpace& feature_space) {
  for (int s = 0; s < samples_.size(); ++s)
    samples_[s]->IndexFeatures(feature_space);
}

// Marks the given sample index for deletion.
// Deletion is actually completed by DeleteDeadSamples.
void TrainingSampleSet::KillSample(TrainingSample* sample) {
  sample->set_sample_index(-1);
}

// Deletes all samples with zero features marked by KillSample.
void TrainingSampleSet::DeleteDeadSamples() {
  using namespace std::placeholders;  // for _1
  samples_.compact(std::bind(&TrainingSampleSet::DeleteableSample, this, _1));
  num_raw_samples_ = samples_.size();
  // Samples must be re-organized now we have deleted a few.
}

// Callback function returns true if the given sample is to be deleted, due
// to having a negative classid.
bool TrainingSampleSet::DeleteableSample(const TrainingSample* sample) {
  return sample == nullptr || sample->class_id() < 0;
}

// Construct an array to access the samples by font,class pair.
void TrainingSampleSet::OrganizeByFontAndClass() {
  // Font indexes are sparse, so we used a map to compact them, so we can
  // have an efficient 2-d array of fonts and character classes.
  SetupFontIdMap();
  int compact_font_size = font_id_map_.CompactSize();
  // Get a 2-d array of generic vectors.
  delete font_class_array_;
  FontClassInfo empty;
  font_class_array_ = new GENERIC_2D_ARRAY<FontClassInfo>(
      compact_font_size, unicharset_size_, empty);
  for (int s = 0; s < samples_.size(); ++s) {
    int font_id = samples_[s]->font_id();
    int class_id = samples_[s]->class_id();
    if (font_id < 0 || font_id >= font_id_map_.SparseSize()) {
      tprintf("Font id = %d/%d, class id = %d/%d on sample %d\n",
              font_id, font_id_map_.SparseSize(), class_id, unicharset_size_,
              s);
    }
    ASSERT_HOST(font_id >= 0 && font_id < font_id_map_.SparseSize());
    ASSERT_HOST(class_id >= 0 && class_id < unicharset_size_);
    int font_index = font_id_map_.SparseToCompact(font_id);
    (*font_class_array_)(font_index, class_id).samples.push_back(s);
  }
  // Set the num_raw_samples member of the FontClassInfo, to set the boundary
  // between the raw samples and the replicated ones.
  for (int f = 0; f < compact_font_size; ++f) {
    for (int c = 0; c < unicharset_size_; ++c)
      (*font_class_array_)(f, c).num_raw_samples =
          (*font_class_array_)(f, c).samples.size();
  }
  // This is the global number of samples and also marks the boundary between
  // real and replicated samples.
  num_raw_samples_ = samples_.size();
}

// Constructs the font_id_map_ which maps real font_ids (sparse) to a compact
// index for the font_class_array_.
void TrainingSampleSet::SetupFontIdMap() {
  // Number of samples for each font_id.
  GenericVector<int> font_counts;
  for (int s = 0; s < samples_.size(); ++s) {
    const int font_id = samples_[s]->font_id();
    while (font_id >= font_counts.size())
      font_counts.push_back(0);
    ++font_counts[font_id];
  }
  font_id_map_.Init(font_counts.size(), false);
  for (int f = 0; f < font_counts.size(); ++f) {
    font_id_map_.SetMap(f, font_counts[f] > 0);
  }
  font_id_map_.Setup();
}


// Finds the sample for each font, class pair that has least maximum
// distance to all the other samples of the same font, class.
// OrganizeByFontAndClass must have been already called.
void TrainingSampleSet::ComputeCanonicalSamples(const IntFeatureMap& map,
                                                bool debug) {
  ASSERT_HOST(font_class_array_ != nullptr);
  IntFeatureDist f_table;
  if (debug) tprintf("feature table size %d\n", map.sparse_size());
  f_table.Init(&map);
  int worst_s1 = 0;
  int worst_s2 = 0;
  double global_worst_dist = 0.0;
  // Compute distances independently for each font and char index.
  int font_size = font_id_map_.CompactSize();
  for (int font_index = 0; font_index < font_size; ++font_index) {
    int font_id = font_id_map_.CompactToSparse(font_index);
    for (int c = 0; c < unicharset_size_; ++c) {
      int samples_found = 0;
      FontClassInfo& fcinfo = (*font_class_array_)(font_index, c);
      if (fcinfo.samples.size() == 0 ||
          (kTestChar >= 0 && c != kTestChar)) {
        fcinfo.canonical_sample = -1;
        fcinfo.canonical_dist = 0.0f;
        if (debug) tprintf("Skipping class %d\n", c);
        continue;
      }
      // The canonical sample will be the one with the min_max_dist, which
      // is the sample with the lowest maximum distance to all other samples.
      double min_max_dist = 2.0;
      // We keep track of the farthest apart pair (max_s1, max_s2) which
      // are max_max_dist apart, so we can see how bad the variability is.
      double max_max_dist = 0.0;
      int max_s1 = 0;
      int max_s2 = 0;
      fcinfo.canonical_sample = fcinfo.samples[0];
      fcinfo.canonical_dist = 0.0f;
      for (int i = 0; i < fcinfo.samples.size(); ++i) {
        int s1 = fcinfo.samples[i];
        const GenericVector<int>& features1 = samples_[s1]->indexed_features();
        f_table.Set(features1, features1.size(), true);
        double max_dist = 0.0;
        // Run the full squared-order search for similar samples. It is still
        // reasonably fast because f_table.FeatureDistance is fast, but we
        // may have to reconsider if we start playing with too many samples
        // of a single char/font.
        for (int j = 0; j < fcinfo.samples.size(); ++j) {
          int s2 = fcinfo.samples[j];
          if (samples_[s2]->class_id() != c  ||
              samples_[s2]->font_id() != font_id ||
              s2 == s1)
            continue;
          GenericVector<int> features2 = samples_[s2]->indexed_features();
          double dist = f_table.FeatureDistance(features2);
          if (dist > max_dist) {
            max_dist = dist;
            if (dist > max_max_dist) {
              max_max_dist = dist;
              max_s1 = s1;
              max_s2 = s2;
            }
          }
        }
        // Using Set(..., false) is far faster than re initializing, due to
        // the sparseness of the feature space.
        f_table.Set(features1, features1.size(), false);
        samples_[s1]->set_max_dist(max_dist);
        ++samples_found;
        if (max_dist < min_max_dist) {
          fcinfo.canonical_sample = s1;
          fcinfo.canonical_dist = max_dist;
        }
        UpdateRange(max_dist, &min_max_dist, &max_max_dist);
      }
      if (max_max_dist > global_worst_dist) {
        // Keep a record of the worst pair over all characters/fonts too.
        global_worst_dist = max_max_dist;
        worst_s1 = max_s1;
        worst_s2 = max_s2;
      }
      if (debug) {
        tprintf("Found %d samples of class %d=%s, font %d, "
                "dist range [%g, %g], worst pair= %s, %s\n",
                samples_found, c, unicharset_.debug_str(c).c_str(),
                font_index, min_max_dist, max_max_dist,
                SampleToString(*samples_[max_s1]).c_str(),
                SampleToString(*samples_[max_s2]).c_str());
      }
    }
  }
  if (debug) {
    tprintf("Global worst dist = %g, between sample %d and %d\n",
            global_worst_dist, worst_s1, worst_s2);
  }
}

// Replicates the samples to a minimum frequency defined by
// 2 * kSampleRandomSize, or for larger counts duplicates all samples.
// After replication, the replicated samples are perturbed slightly, but
// in a predictable and repeatable way.
// Use after OrganizeByFontAndClass().
void TrainingSampleSet::ReplicateAndRandomizeSamples() {
  ASSERT_HOST(font_class_array_ != nullptr);
  int font_size = font_id_map_.CompactSize();
  for (int font_index = 0; font_index < font_size; ++font_index) {
    for (int c = 0; c < unicharset_size_; ++c) {
      FontClassInfo& fcinfo = (*font_class_array_)(font_index, c);
      int sample_count = fcinfo.samples.size();
      int min_samples = 2 * std::max(kSampleRandomSize, sample_count);
      if (sample_count > 0 && sample_count < min_samples) {
        int base_count = sample_count;
        for (int base_index = 0; sample_count < min_samples; ++sample_count) {
          int src_index = fcinfo.samples[base_index++];
          if (base_index >= base_count) base_index = 0;
          TrainingSample* sample = samples_[src_index]->RandomizedCopy(
              sample_count % kSampleRandomSize);
          int sample_index = samples_.size();
          sample->set_sample_index(sample_index);
          samples_.push_back(sample);
          fcinfo.samples.push_back(sample_index);
        }
      }
    }
  }
}

// Caches the indexed features of the canonical samples.
// ComputeCanonicalSamples must have been already called.
// TODO(rays) see note on ReliablySeparable and try restricting the
// canonical features to those that truly represent all samples.
void TrainingSampleSet::ComputeCanonicalFeatures() {
  ASSERT_HOST(font_class_array_ != nullptr);
  const int font_size = font_id_map_.CompactSize();
  for (int font_index = 0; font_index < font_size; ++font_index) {
    const int font_id = font_id_map_.CompactToSparse(font_index);
    for (int c = 0; c < unicharset_size_; ++c) {
      int num_samples = NumClassSamples(font_id, c, false);
      if (num_samples == 0)
        continue;
      const TrainingSample* sample = GetCanonicalSample(font_id, c);
      FontClassInfo& fcinfo = (*font_class_array_)(font_index, c);
      fcinfo.canonical_features = sample->indexed_features();
    }
  }
}

// Computes the combined set of features used by all the samples of each
// font/class combination. Use after ReplicateAndRandomizeSamples.
void TrainingSampleSet::ComputeCloudFeatures(int feature_space_size) {
  ASSERT_HOST(font_class_array_ != nullptr);
  int font_size = font_id_map_.CompactSize();
  for (int font_index = 0; font_index < font_size; ++font_index) {
    int font_id = font_id_map_.CompactToSparse(font_index);
    for (int c = 0; c < unicharset_size_; ++c) {
      int num_samples = NumClassSamples(font_id, c, false);
      if (num_samples == 0)
        continue;
      FontClassInfo& fcinfo = (*font_class_array_)(font_index, c);
      fcinfo.cloud_features.Init(feature_space_size);
      for (int s = 0; s < num_samples; ++s) {
        const TrainingSample* sample = GetSample(font_id, c, s);
        const GenericVector<int>& sample_features = sample->indexed_features();
        for (int i = 0; i < sample_features.size(); ++i)
          fcinfo.cloud_features.SetBit(sample_features[i]);
      }
    }
  }
}

// Adds all fonts of the given class to the shape.
void TrainingSampleSet::AddAllFontsForClass(int class_id, Shape* shape) const {
  for (int f = 0; f < font_id_map_.CompactSize(); ++f) {
    const int font_id = font_id_map_.CompactToSparse(f);
    shape->AddToShape(class_id, font_id);
  }
}

#ifndef GRAPHICS_DISABLED

// Display the samples with the given indexed feature that also match
// the given shape.
void TrainingSampleSet::DisplaySamplesWithFeature(int f_index,
                                                  const Shape& shape,
                                                  const IntFeatureSpace& space,
                                                  ScrollView::Color color,
                                                  ScrollView* window) const {
  for (int s = 0; s < num_raw_samples(); ++s) {
    const TrainingSample* sample = GetSample(s);
    if (shape.ContainsUnichar(sample->class_id())) {
      GenericVector<int> indexed_features;
      space.IndexAndSortFeatures(sample->features(), sample->num_features(),
                                 &indexed_features);
      for (int f = 0; f < indexed_features.size(); ++f) {
        if (indexed_features[f] == f_index) {
          sample->DisplayFeatures(color, window);
        }
      }
    }
  }
}

#endif // !GRAPHICS_DISABLED

}  // namespace tesseract.