summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'tesseract/src/arch/intsimdmatrixneon.cpp')
-rw-r--r--tesseract/src/arch/intsimdmatrixneon.cpp177
1 files changed, 177 insertions, 0 deletions
diff --git a/tesseract/src/arch/intsimdmatrixneon.cpp b/tesseract/src/arch/intsimdmatrixneon.cpp
new file mode 100644
index 00000000..4e1fe90b
--- /dev/null
+++ b/tesseract/src/arch/intsimdmatrixneon.cpp
@@ -0,0 +1,177 @@
+///////////////////////////////////////////////////////////////////////
+// File: intsimdmatrixneon.cpp
+// Description: matrix-vector product for 8-bit data on neon.
+// Author: Robin Watts (from the AVX2 original by Ray Smith)
+//
+// (C) Copyright 2017, Google Inc.
+// (C) Copyright 2020, Artifex Software Inc.
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+// http://www.apache.org/licenses/LICENSE-2.0
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+///////////////////////////////////////////////////////////////////////
+
+#if defined(__ARM_NEON)
+
+#include "intsimdmatrix.h"
+
+#include "arm_neon.h"
+#include <cstdint>
+#include <algorithm>
+#include <vector>
+
+namespace tesseract {
+
+// Number of outputs held in each register. (Actually, we use a
+// pair of 4x32 registers, so 8 x 32 bit ints).
+constexpr int kNumOutputsPerRegister = 8;
+// Maximum number of registers that we will use.
+constexpr int kMaxOutputRegisters = 1;
+// Number of inputs in the inputs register.
+constexpr int kNumInputsPerRegister = 8;
+// Number of inputs in each weight group.
+constexpr int kNumInputsPerGroup = 8;
+
+// Function to compute part of a matrix.vector multiplication. The weights
+// are in a very specific order (see above) in w, which is multiplied by
+// u of length num_in, to produce output v after scaling the integer results
+// by the corresponding member of scales.
+// The amount of w and scales consumed is fixed and not available to the
+// caller.
+
+// Computes part of matrix.vector v = Wu. Computes N=8 results.
+// The weights *must* be arranged so that consecutive reads from wi
+// provides (num_in/kNumInputsPerGroup groups of (N output dim groups of
+// (kNumInputsPerGroup inputs))). After that there must be N consecutive
+// bias weights, before continuing with any more weights.
+// u must be padded out with zeros to
+// kNumInputsPerGroup*ceil(num_in/kNumInputsPerGroup) elements.
+static inline void
+PartialMatrixDotVector8(const int8_t* __restrict wi,
+ const double* __restrict scales,
+ const int8_t* __restrict u,
+ int num_in,
+ double* __restrict v,
+ int num_out) {
+ // Initialize all the results to 0.
+ int32x4_t result0123 = { 0, 0, 0, 0 };
+ int32x4_t result4567 = { 0, 0, 0, 0 };
+ int8x8_t bias_scale = { 127, 127, 127, 127, 127, 127, 127, 127 };
+ // Iterate over the input (u), one registerful at a time.
+ for (int j = 0; j < num_in; j += 8) {
+ int8x8_t vu = vld1_s8(u); // vu = u0 u1 u2 u3 u4 u5 u6 u7
+ int8x16_t vw01 = vld1q_s8(wi); // vw0 = w00 w01 w02 w03 w04 w05 w06 w07 w10 w11 w12 w13 w14 w15 w16 w17
+ int8x16_t vw23 = vld1q_s8(wi+8*2); // vw2 = w20 w21 w22 w23 w24 w25 w26 w27 w30 w31 w32 w33 w34 w35 w36 w37
+ int8x16_t vw45 = vld1q_s8(wi+8*4); // vw4 = w40 w41 w42 w43 w44 w45 w46 w47 w50 w51 w52 w53 w54 w55 w56 w57
+ int8x16_t vw67 = vld1q_s8(wi+8*6); // vw6 = w60 w61 w62 w63 w64 w65 w66 w67 w70 w71 w72 w73 w74 w75 w76 w77
+
+ int16x8_t vrow0q = vmull_s8(vget_low_s8(vw01), vu); // vrow0q = vw00.u0 w01.u1 w02.u2 w03.u3 vw04.u4 w05.u5 w06.u6 w07.u7
+ int16x8_t vrow1q = vmull_s8(vget_high_s8(vw01), vu); // vrow1q = vw10.u0 w11.u1 w12.u2 w13.u3 vw14.u4 w15.u5 w16.u6 w17.u7
+ int16x8_t vrow2q = vmull_s8(vget_low_s8(vw23), vu); // vrow2q = vw20.u0 w21.u1 w22.u2 w23.u3 vw24.u4 w25.u5 w26.u6 w27.u7
+ int16x8_t vrow3q = vmull_s8(vget_high_s8(vw23), vu); // vrow3q = vw30.u0 w31.u1 w32.u2 w33.u3 vw34.u4 w35.u5 w36.u6 w37.u7
+ int16x8_t vrow4q = vmull_s8(vget_low_s8(vw45), vu); // vrow4q = vw40.u0 w41.u1 w42.u2 w43.u3 vw44.u4 w45.u5 w46.u6 w47.u7
+ int16x8_t vrow5q = vmull_s8(vget_high_s8(vw45), vu); // vrow5q = vw50.u0 w51.u1 w52.u2 w53.u3 vw54.u4 w55.u5 w56.u6 w57.u7
+ int16x8_t vrow6q = vmull_s8(vget_low_s8(vw67), vu); // vrow6q = vw60.u0 w61.u1 w62.u2 w63.u3 vw64.u4 w65.u5 w66.u6 w67.u7
+ int16x8_t vrow7q = vmull_s8(vget_high_s8(vw67), vu); // vrow7q = vw70.u0 w71.u1 w72.u2 w73.u3 vw74.u4 w75.u5 w76.u6 w77.u7
+
+ int32x4_t vrow0q2 = vpaddlq_s16(vrow0q); // vrow0q2 = vw00.u0+w01.u1 w02.u2+w03.u3 vw04.u4+w05.u5 w06.u6+w07.u7
+ int32x4_t vrow1q2 = vpaddlq_s16(vrow1q); // vrow1q2 = vw10.u0+w11.u1 w12.u2+w13.u3 vw14.u4+w15.u5 w16.u6+w17.u7
+ int32x4_t vrow2q2 = vpaddlq_s16(vrow2q); // vrow2q2 = vw20.u0+w21.u1 w22.u2+w23.u3 vw24.u4+w25.u5 w26.u6+w27.u7
+ int32x4_t vrow3q2 = vpaddlq_s16(vrow3q); // vrow3q2 = vw30.u0+w31.u1 w32.u2+w33.u3 vw34.u4+w35.u5 w36.u6+w37.u7
+ int32x4_t vrow4q2 = vpaddlq_s16(vrow4q); // vrow4q2 = vw40.u0+w41.u1 w42.u2+w43.u3 vw44.u4+w45.u5 w46.u6+w47.u7
+ int32x4_t vrow5q2 = vpaddlq_s16(vrow5q); // vrow5q2 = vw50.u0+w51.u1 w52.u2+w53.u3 vw54.u4+w55.u5 w56.u6+w57.u7
+ int32x4_t vrow6q2 = vpaddlq_s16(vrow6q); // vrow6q2 = vw60.u0+w61.u1 w62.u2+w63.u3 vw64.u4+w65.u5 w66.u6+w67.u7
+ int32x4_t vrow7q2 = vpaddlq_s16(vrow7q); // vrow7q2 = vw70.u0+w71.u1 w72.u2+w73.u3 vw74.u4+w75.u5 w76.u6+w77.u7
+
+ vrow0q2 = vcombine_s32(vpadd_s32(vget_low_s32(vrow0q2), vget_high_s32(vrow0q2)),
+ vpadd_s32(vget_low_s32(vrow1q2), vget_high_s32(vrow1q2)));
+ // vrow0q2 = vw00.u0+...+w03.u3 vw04.u4+...+w07.u7 vw10.u0+...+w13.u3 vw14.u4+...+w17.u7
+ vrow2q2 = vcombine_s32(vpadd_s32(vget_low_s32(vrow2q2), vget_high_s32(vrow2q2)),
+ vpadd_s32(vget_low_s32(vrow3q2), vget_high_s32(vrow3q2)));
+ // vrow0q2 = vw20.u0+...+w23.u3 vw24.u4+...+w27.u7 vw30.u0+...+w33.u3 vw34.u4+...+w37.u7
+ vrow4q2 = vcombine_s32(vpadd_s32(vget_low_s32(vrow4q2), vget_high_s32(vrow4q2)),
+ vpadd_s32(vget_low_s32(vrow5q2), vget_high_s32(vrow5q2)));
+ // vrow0q2 = vw40.u0+...+w43.u3 vw44.u4+...+w47.u7 vw50.u0+...+w53.u3 vw54.u4+...+w57.u7
+ vrow6q2 = vcombine_s32(vpadd_s32(vget_low_s32(vrow6q2), vget_high_s32(vrow6q2)),
+ vpadd_s32(vget_low_s32(vrow7q2), vget_high_s32(vrow7q2)));
+ // vrow0q2 = vw60.u0+...+w63.u3 vw64.u4+...+w67.u7 vw70.u0+...+w73.u3 vw74.u4+...+w77.u7
+
+ vrow0q2 = vcombine_s32(vpadd_s32(vget_low_s32(vrow0q2), vget_high_s32(vrow0q2)),
+ vpadd_s32(vget_low_s32(vrow2q2), vget_high_s32(vrow2q2)));
+ // vrow0q2 = vw00.u0+...+w07.u7 vw10.u0+...+w17.u7 vw20.u0+...+w27.u7 vw30.u0+...+w37.u7
+ vrow4q2 = vcombine_s32(vpadd_s32(vget_low_s32(vrow4q2), vget_high_s32(vrow4q2)),
+ vpadd_s32(vget_low_s32(vrow6q2), vget_high_s32(vrow6q2)));
+ // vrow0q2 = vw40.u0+...+w47.u7 vw50.u0+...+w57.u7 vw60.u0+...+w67.u7 vw70.u0+...+w77.u7
+
+ result0123 = vaddq_s32(result0123, vrow0q2);
+ result4567 = vaddq_s32(result4567, vrow4q2);
+ u += 8;
+ wi += 64;
+ }
+ {
+ int8x8_t bias = vld1_s8(wi); // vw0 = b0 b1 b2 b3 b4 b5 b6 b7
+ int16x8_t scaled_bias = vmull_s8(bias, bias_scale);
+ result0123 = vaddw_s16(result0123, vget_low_s16(scaled_bias));
+ result4567 = vaddw_s16(result4567, vget_high_s16(scaled_bias));
+ *v++ = vget_lane_s32(vget_low_s32 (result0123), 0) * *scales++;
+ if (num_out > 1)
+ *v++ = vget_lane_s32(vget_low_s32 (result0123), 1) * *scales++;
+ if (num_out > 2)
+ *v++ = vget_lane_s32(vget_high_s32(result0123), 0) * *scales++;
+ if (num_out > 3)
+ *v++ = vget_lane_s32(vget_high_s32(result0123), 1) * *scales++;
+ if (num_out > 4)
+ *v++ = vget_lane_s32(vget_low_s32 (result4567), 0) * *scales++;
+ if (num_out > 5)
+ *v++ = vget_lane_s32(vget_low_s32 (result4567), 1) * *scales++;
+ if (num_out > 6)
+ *v++ = vget_lane_s32(vget_high_s32(result4567), 0) * *scales++;
+ if (num_out > 7)
+ *v = vget_lane_s32(vget_high_s32(result4567), 1) * *scales;
+ }
+}
+
+static void matrixDotVector(int dim1, int dim2, const int8_t* wi,
+ const double* scales, const int8_t* u, double* v) {
+ const int num_out = dim1;
+ const int num_in = dim2 - 1;
+ // Each call to a partial_func_ produces group_size outputs, except the
+ // last one, which can produce less.
+ const int rounded_num_in =
+ IntSimdMatrix::Roundup(num_in, kNumInputsPerGroup);
+ int group_size = kNumOutputsPerRegister * kMaxOutputRegisters;
+ int output = 0;
+
+ int w_step = (rounded_num_in + 1) * group_size;
+
+ for (; output + group_size <= num_out; output += group_size) {
+ PartialMatrixDotVector8(wi, scales, u, rounded_num_in, v, kNumOutputsPerRegister);
+ wi += w_step;
+ scales += group_size;
+ v += group_size;
+ }
+ if (output < num_out)
+ PartialMatrixDotVector8(wi, scales, u, rounded_num_in, v, num_out & (kNumOutputsPerRegister-1));
+}
+
+const IntSimdMatrix IntSimdMatrix::intSimdMatrixNEON = {
+ // Function.
+ matrixDotVector,
+ // Number of 32 bit outputs held in each register.
+ kNumOutputsPerRegister,
+ // Maximum number of registers that we will use to hold outputs.
+ kMaxOutputRegisters,
+ // Number of 8 bit inputs in the inputs register.
+ kNumInputsPerRegister,
+ // Number of inputs in each weight group.
+ kNumInputsPerGroup
+};
+
+} // namespace tesseract.
+
+#endif /* __ARM_NEON */